

Starting off in Glade/GTK+
Tutorial by Ishan Chattopadhyaya

Introduction
How often do we admire the work which the GNOME project has brought out and wish that we too could have created
something which could be called "my software" on Linux? Well, if you are interested in developing Linux programs, the best
tool that can come to your rescue is Glade.

Now, the question arises, "how do we learn Glade?". Glade is actually a tool that creates the interface, i.e. the windows, the
dialogs, the widgets, and creates a framework for your code. It creates the necessary files in the source code where you have
to do all the coding manually. Therefore it is quite easy building an interface with this tool. This means, you:

l Use Glade and create the interface

l Build the source code using Glade

l Edit the source code manually (through emacs or gedit)

l Compile your project files

In this tutorial, you will see how to create an interface and how to link certain widgets with one another.

Creating the interface

Open Glade. You will see a number of component windows of Glade. They are Glade (Main), Palette, Properties, etc. (See
figure above for an example environment) Proceed as follows:

l Click on Window in the Palette (usually the first icon). By this, a window is created which will form the main window for
this tutorial program. You’ll see that window1 is added to the Glade window. Double click it. This displays the windows
for editing.

l Select Fixed Position in the Palette (you’ll find it somewhere down) and click in the window1.

[Note for other programmers: Using a fixed position container is easier for beginners rather than using vertical and horizontal boxes etc. Besides, all who have previous experience with
Microsoft Visual Basic/C++ or Power Builder will find it more comfortable to adjust. Using vertical and horizontal box containers can be left for a later stage in the course for a beginner
learning Glade.]

Original Location: www.geocities.com/ichattopadhyaya/linux/glade.htm
Mirror Site: http://macewan.org/glade
Resources sponsored by: www.myhomeoffice.org

The Glade Environment (URL:
www.myhomeoffice.org/glade/environm.jpg or

www.geocities.com/ichattopadhyaya/linux/environm.jpg)

l Add two text entry widgets, two buttons, one pixmap and two radio buttons to your container in the window1. Also
add a list widget.

[Tip: You can move your mouse over the icons in the palette and wait for a second for the ‘tool tips’ to popup. Take a while exploring these tool tips so you are comfortable with the
development environment.]

l Name one button as BT_OK and label it as OK. Name the other button as BT_EXIT and label it as Exit. (You can select
the button and change the Name and Label from the Properties window.) Similarly name the two text entry boxes as
entry1 and entry2. Name the radio buttons as radiobutton1 and radiobutton2 and label them as Show Picture and
Hide Picture respectively. Name the list as list1. Name the pixmap as pixmap1 and assign any xpm file of your choice
to it.

l Click on the window1 on the Glade window and from the Properties window, select suitable width and height for your
window.

l Your interface should now look somewhat like this:

l Now select your Exit button. Click on the Signals tab on the Properties window. Here, add a signal as clicked (Click at
"..." button and select "Clicked" in the windows that pops up and then click Add in the Properties window. See the figures
below!) with the suggested function name on_BT_OK_clicked. Do the same for the other button. For the radio
buttons, add the released signals. In both the occasions, accept the default function name which Glade provides. Click
at window1 from the Glade window to change to properties of the Window. In the signals tab of the property window,
add a destroy signal.

l Now save your project. The Project Options dialog will appear. Here select the path of your project,
e.g. /home/<username>/Projects/Project1. Select C as the programming language. Once you are through with Project
Options, click at the Build Source button from the toolbar for Glade to write the code for your interface.

Editing the code

Adding the Signals (After Clicking "..." button) Adding the Signals (After Clicking Add button)

Now that we have successfully created the interface and built the source for it, the time has come to edit the code. Since Glade
is not an Integrated Development Environment (IDE) like Visual Basic, Visual C++ etc., you will need to edit the code using an
external text editor. Most programmers use emacs as their favorite text editor for coding, but I prefer using gedit, since it has a
multiple document interface (MDI). The choice of editor is up to you!

Whichever the text editor it might be, fire it up. Assuming that during building your source you gave /root/Projects/Project1 as
the directory of your project, open the file /home/<username>/Projects/Project1/src/callbacks.c in your editor. This is the file where all
the callback functions are written. What I mean is that you can assign any functions to the widgets that you connected during
adding the signals. So, this file is mainly responsible for the interactivity between the widgets, e.g. buttons, etc.

Scroll down the file until you come across the function on_BT_EXIT_clicked. In the space that is provided within the function,
add a function: gtk_main_quit(); Your function should now look like this:

[Note: The gtk_main_quit() function causes the program to end. Another alternate function exit(0); can also be used for the same purpose.]

Do the same for the on_window1_destroy function. That is add gtk_main_quit() function there also. This ensures that when
the window is closed using the 'X' button on the upper right, the program ends.

Similarly, add the following code to the on_BT_OK_clicked function:

{

gtk_main_quit();

}

void
on_BT_EXIT_clicked (GtkButton *button,
gpointer user_data)

{

/* INITIALIZATIONS START HERE */

/* COPYING THE TEXT ENTERED IN ENTRY1 TO THE LIST WIDGET */

/* COPYING THE TEXT ENTERED IN entry1 TO entry2 */

void
on_BT_OK_clicked (GtkButton *button,
gpointer user_data)

GtkEntry *two; // this will be used for the second entry
GtkWidget * listitem; // These will
gchar str[50]; // be used
gchar * p_str = str; // for the list
GtkWidget *dialog, *label, *okay_button; // These will be used for the dialog
char *text;

GtkWidget * entry = lookup_widget(GTK_WIDGET(button), "entry1"); // Getting pointers to
GtkWidget * list = lookup_widget(GTK_WIDGET(button), "list1"); // entry1 & list1

strncpy(p_str, gtk_entry_get_text(GTK_ENTRY(entry)),50); // Storing the text of entry1 in the variable
p_str

listitem = gtk_list_item_new_with_label (p_str); // Adding p_str to the list
gtk_container_add (GTK_CONTAINER (list), listitem);

gtk_widget_show(listitem); // Showing the updated list

text = gtk_entry_get_text(entry); // obtain the text from the widget
two = GTK_ENTRY(lookup_widget(button, "entry2")); // obtain the pointer to the second GtkEntry widget
gtk_entry_set_text(two, text); // set the text for the widget

 Now add the following code to the two radiobutton functions, like this:

This piece of code is quite simple to understand. What the on_BT_OK_clicked function does is as follows:

l Copies the text entered by the user in entry1 to entry2

l Copying the same text to the list widget as an item

l Creating a dialog box displaying the text of the entry1

Now that the coding part is done, now you have to proceed compiling your project.

Compiling the Project

/* SHOWING A DIALOG BOX WITH THE TEXT OF entry1 IN IT */

}

dialog = gtk_dialog_new();

label = gtk_label_new (text); // Create the widgets of the
dialog box

okay_button = gtk_button_new_with_label("Okay");

gtk_signal_connect_object(GTK_OBJECT (okay_button), "clicked",
gtk_widget_destroy, GTK_OBJECT(dialog));

// Ensure that the dialog box
is destroyed when the user
clicks ok.

gtk_container_add (GTK_CONTAINER (GTK_DIALOG(dialog)->action_area),
okay_button);

// Add the Okay Button to
the dialof

gtk_container_add (GTK_CONTAINER (GTK_DIALOG(dialog)->vbox), label); // Add the label

gtk_widget_show_all (dialog); // Show everything the
dialog.

{

}

{

}

void
on_radiobutton1_released (GtkButton *button,
gpointer user_data)

GtkPixmap *pix; // Initialisation
pix = GTK_PIXMAP(lookup_widget(button, "pixmap1")); // Getting the pointer to the pixmap
gtk_widget_show(pix); // Show the pixmap

void
on_radiobutton2_released (GtkButton *button,
gpointer user_data)

GtkPixmap *pix; // Initialisation
pix = GTK_PIXMAP(lookup_widget(button, "pixmap1")); // Getting the pointer to the pixmap
gtk_widget_hide(pix); // Hide the pixmap

Open a terminal window. Go to the project directory, i.e. /home/<username>/Projects/Project1. Before making the project, one
needs to make check the configurations of the current setup. For that run ./autogen.sh. After that, type make and when you
have successfully made the files without any errors, type make install to complete the installation. Type project1 to run the
program!

Overview of this tutorial

DOWNLOAD THE TARBALL OF THE EXAMPLE (151 KB)
{http://www.myhomeoffice.org/glade/project1.tar.gz} or {http://www.macewan.org/glade/project1.tar.gz}

SIGN MY GUEST BOOK {http://pub40.bravenet.com/guestbook/add.php?usernum=3377474861}

This small tutorial will let you understand simple interactions between widgets. This will also explain how to compile and run
your projects. I hope you benefit from this tutorial. Please mail in your suggestions to me at ichattopadhyaya@yahoo.com.
Please SIGN MY GUEST BOOK for your suggestions or visit my website: http://www.geocities.com/ichattopadhyaya. I am
currently a 15 year old high school student and cannot devote all my time to Glade and GTK+ programming. But I hope to
come up with a few more tutorials like this. Enjoy Glade!

 Please copy and use what you want from this site.
ichattopadhyaya@yahoo.com

