
“Nathalie Baye”

Vice snapshot with Vice palette

Made with the GIMP from a NB photo
and converted to C64 320x200

Hires Mode Bitmap
by Stefano Tognon

in 2008

“Tracker forever”
...

Free Software Group

1

SIDin 13
version 1.00

28 June 2010

2

SIDin Contents

General Index
Editorials...4
News...5

Goatracker at SF..5
ACID 64 Player 2.2-2.4...6
HVSC #49..7
Catweasel MK4plus...7
High Voltage SID Collection Search v1.4...8
C64.sk Sidcompo 8 Radiostream...8
MSSIAH...9
C64.sk Sidcompo 8..9
iPhone Sid Player...10
GoatTracker v2.68/2.69...10
Sidplayw2.5...11
XSidplay 2.0.3..11
CGSC updates..11
ACID 64 Player Pro v3.0.0-3.0.2...11
HVMEC 0.9..13
HVSC #50..13
HVSC #51..14
HVSC #52..14
HardSID Uno/UPlay..14
HVSC #53..15

TSM & Freedom Interview!...16
JITT64 Tracker...20

Main screen..20
Tracks...21
Pattern..22
Instruments...24
Table of Values..27
Instrument examples..28
Conclusion...32

Inside JITT64..33
Init &Play (IRQ) routine...33
Play Pattern..35
Instruments definition..40
Play Instrument..41
Play Command...44
Play Hard-Restart..50
Conclusion...50

3

Editorials
Stefano Tognon <ice00@libero.it>

Hi, again.

It is long long time that this number is being writing. Delay after delay, but finally it is ready :)

You will see that the news section is very big this time as the previous number was released in
middle 2008.

The time for this delay is that my activity were very busy in this periods and most of the work
where putted into the programming of my personal music editor: JITT64.

This number, in fact, shows you all about JITT64.

In the first article we will see how JITT64 works from an user perspective, so after reading this
you will be able to produce music with the tracker.

The second article, instead, shows how the player works by analyzing his implementation: there
are lot of technical stuff in it.

For finish this editorial I like to give two words about Facebook. One night of many months ago I
just see one name into a box that Facebook use for let you find other people that maybe have
some of your interested or that you can know: Wally Beben!!

Yes, Wally Beben the famous SID musician that made epically music like “Dark Side” :)

He did not consider him so famous and he is out of scene for so long time right now, but it is al-
ways a pleasure to speak with this legend people, so thanks to Facebook for have proposed me
to find him.

Bye
S.T.

4

mailto:ice00@libero.it

News

Some various news of players, programs, and competitions:

• Goattracker at SF • ACID 64 Player 2.2-2.4

• HVSC #49 • Catweasel MK4plus

• High Voltage SID Collection Search v1.4 • C64.sk Sidcompo 8 Radiostream

• MSSIAH • C64.sk Sidcompo 8

• Iphone Sid Player • GoatTracker v2.68/2.69

• Sidplayw2.5 • XSidplay 2.0.3

• CGSC updates • ACID 64 Player Pro v3.0.0-3.0.2

• HVMEC 0.9 • HVSC #50

• HVSC #51 • HVSC #52

• HardSID Uno/UPlay • HVSC #53

Goatracker at SF

Goattracker, the crossplatform C64 music editor, is now available even at Sourceforce:
http://sourceforge.net/projects/goattracker2/
You can so check the developed version thrown svn access and can contribute to it using the

features that Sourcefoge let you use.
Looking at the svn repository, we can find this interesting new document made by Simon Ben-

nett about the tracker:

5

http://sourceforge.net/projects/goattracker2/

ACID 64 Player 2.2-2.4

The C64 Music Player for all HardSID
devices and the Catweasel MK series
was updated in June 2008.

What's new in version 2.2:
Improvements
• Improved response time on the

HardSID 4U (new hardsid.dll re-
quired)

• Improved playback on multi core
CPU systems during back-
ground playback on ISA/PCI
cards

• Increased FIFO memory on
Catweasel MK4 for better play-
back of digi tunes

• Song length database is now
loaded when HVSC location is
updated in preferences dialog

 Fixes
• Clock is now displayed correctly during HardSID 4U playback
• Vista layout issues

What's new in version 2.3:
New
• Popup menu added to select sub tunes
• Device selection can be temporarily locked when automatic device selection is configured

Improvements
• Improved SID reset
• Display of track bar for sub tune selection changed
• Numeric keypad can now be used for some short cuts
• Added Voice 4 mute/undo mute short cut. See readme.txt file for all short cuts
• Relocation area is renamed to Free Pages and is showing auto detect memory ranges

Fixes
• Digi playback on ISA/PCI cards could cause timing problems on some systems
• Window size and position startup option is now shown correctly

What's new in version 2.3.1:
Improvements
• Button icons

Fixes
• Opening SID files via Internet Explorer is now possible. This makes it possible to play SID

tunes via the online SID search of www.hardsid.com

What's new in version 2.4.0:
Improvements
• Emulation improvements
• STIL info can now be retrieved for a SID file if it is not played from the default HVSC loca-

tion
• When HardSID 4U device is turned off while ACID 64 Player is running and turned on

again, playback can continue after song restart
•

Download it from http://www.acid64.com/

6

http://www.acid64.com/
http://www.hardsid.com/

HVSC #49

High Voltage SID Collection: Update #49
Date: November 09, 2008

Hello fellow lover of SID music! Nice you found some time to read through this script, to see
what has been changed in the HVSC and for what reason. After this update, the collection should
contain 36,081 SID files!

This update features (all approximates):
✗ 1059 new SIDs
✗ 54 fixed/better rips
✗ 2 fixes of PlaySID/Sidplay1 specific SIDs
✗ 10 repeats/bad rips eliminated
✗ 431 SID credit fixes
✗ 232 SID model/clock infos
✗ 9 tunes from /DEMOS/UNKNOWN/ identified
✗ 40 tunes moved out of /DEMOS/ to their composers' directories 14 tunes moved out of

/GAMES/ to their composers' directories
Download HVSC Update #49 from the usual address: http://www.hvsc.c64.org/

Catweasel MK4plus

The Catweasel MK4plus replaces the Catweasel MK4, which is sold out and discontinued. The
main changes are of cosmetic nature, but there have also been improvements made following cus-
tomer feedback in some places.

The one easily visible change is that the new card is no longer low-profile PCI compliant. This
feature of the old Catweasel MK4 was rarely used by customers, so it was decided to use the in-
creased space for a better arrangement of the two SID sockets. These are more easily accessible
now. Additional filters in the audio part are geared towards filtering noise from high-performance
graphics cards and low-quality power supplies. Another novelty is the external audio jack and an
angled internal audio connector for better accessibility.

Check: http://www.vesalia.de/e_catweaselmk4.htm

7

http://www.vesalia.de/e_catweaselmk4.htm
http://www.vesalia.de/e_catweaselmk4.htm
http://www.hvsc.c64.org/

High Voltage SID Collection Search v1.4

A new online site for searching tunes in HVSC is available at:
http://www.exotica.org.uk/wiki/Special:HVSC

C64.sk Sidcompo 8 Radiostream

Within the start of voting phase of SidCompo 8, a new online radio stream was made available
for listening all the compo tunes: http://88.73.79.157:8000/radio.ogg

8

http://88.73.79.157:8000/radio.ogg
http://www.exotica.org.uk/wiki/Special:HVSC

MSSIAH

The MSSIAH is a MIDI cartridge for the Com-
modore 64.

It contains a suite of music applications that
starts instantly as you insert the cartridge and
start up the computer.

With these applications you can play the
C64's audio circuit (SID) via MIDI or stand-
alone with the internal sequencers.

MSSIAH is short for MIDI SID Software Inte-
grated Applications and Hardware and means
that the cartridge contains both software and
hardware to midify the C64. Since they are inte-
grated you won't need hard-to-get MIDI periph-
erals to hook it up to your synthesizer or se-
quencer.

Just plug in a MIDI cable and off you go!

http://www.8bitventures.com/mssiah/

C64.sk Sidcompo 8

This year was the Last SidCompo (the 8 of the series) that www.c64.sk organized. Next year
there will be some different kind of compo...

Here the result:

01. Eskimonika by Stellan Andersson (Dane) (852 PTS)
02. Intrinsic by Conrad/Viruz/Samar/Onslaught (Owen Crowley) (850.5 PTS)
03. A Liquor Store Anthem by Randall (787.5 PTS)
04. Love Land by Steven Diemer (A-Man/Xenon) (781 PTS)
05. Two Minute Jam by Josep Barwick (Stainless Steel) (675 PTS)
06. Stay Chill by Marcin Majdzik (PSycHo) (641 PTS)
07. Rocco Siffredi Invades 1541-II by Kamil Wolnikowski (Jammer) (638 PTS)
08. Stretch Marks by Hein Holt (Hein/Vision) (627 PTS)
09. Christ 69 Electroclash Deluxe by Arman Behdad (Intensity) (615 PTS)
10. Wander Fool by Vincent Merken (_V_) (563 PTS)
11. Johnny Rocket by Uneksija (Antti Pitkämäki) (534 PTS)
12. Back to Planet:dATA by LordNikon/Dekadence (513 PTS)
13. fuckyou.progressivedata.fuckme by Sascha Zeidler (Linus) (508 PTS)
14. Pixel Hell Level 9 by Hlkon Repstad (Archmage of Instinct) (498 PTS)
15. Drunken Ninja Dance by Rambones (454 PTS)
16. See You Later Oscilator by Kristian Myklebust (kribust) (451.5 PTS)
17. Elegy by Peter Bergstrand (392 PTS)
18. Levitation by Henne / The Dreams (385 PTS)
19. Disco Dream by Richard Bayliss (380 PTS)
20. Mustelid by Hukka/Dekadence (359.5 PTS)
21. Ninja Life by G-Fellow / CiViTaS (Gerhard Flagge) (353 PTS)
22. Upgrade by Dennis Hildingsson (Rusty46) (286 PTS)

9

http://www.c64.sk/
http://www.8bitventures.com/mssiah/

iPhone Sid Player

In the App Store for the iPhone there is avail-
able a Sid Player for very low cost.

From http://iphone.vanille.de/sidplayer/ we can
get more informations:

“Sid Player brings you the sound of the Com-
modore C64 to your iPhone and the iPod Touch.
Enjoy game classics such as 'Commando',
'Arkanoid', 'The last V8' or listen to the music of
'Rob Hubbard', 'Martin Galway', and many others.

Sid Player gives you access to the High Voltage
Sid Collection (HVSC) consisting of over 33.000
songs from 1125 authors. Thanks to the unique
sound aesthetics, Sid music is now considered an
art of its own and there's a constant flow of new
creations.

A Sid file occupies only few kbytes, thus you
can quickly download C64 music via EDGE or
UMTS and listen for hours. The search function
enables you to find your favourites in a blink.”

GoatTracker v2.68/2.69

The new versions of Goattracker2 is available at Sourceforge:

v2.68:
• Fixed set tempo -command overwriting frequencytable in 1 or 2 channel modes.
• Fixed sound uninit crash with multicore processors (?)
• SID register write order tweaked to resemble JCH NewPlayer 21.
• Unbuffered playroutine optimized & modified to resemble buffered mode timing more.
• New reSID-fp engine (with distortion & nonlinearity) from Antti
• Lankila integrated. Activated with /I command line option parameters 2 & 3.
• Command quick reference by Simon Bennett included.

V2.69:
• Fixed click bug in reSID audio output.
• Newest reSID-fp code integrated.
• reSID-fp filter parameters adjustable from the configuration file.

10

http://iphone.vanille.de/sidplayer/

Sidplayw2.5

This is just an update of the old Sidplay2/windows. Some facts:

● Contains the latest (v32) filter distortion emu by Antti Lankila
● Uses a lot of raster time (cpu). 35-45% cpu on my P4 2,4 GHz.
● Looks just as boring as the old Sidplay2.
● Works in Wine!
● Sounds really great ;-)

Download at: http://noname.c64.org/csdb/release/?id=76056

XSidplay 2.0.3

It is available from March 2009 the new ver-
sion of XSidplay2 (the sid player for Linux):
http://sourceforge.net/projects/xsidplay2/

Changes:
● Allow to compile in Windows with QT3
● Remove LCD display bug when changing

audio
● Add experimental support for ALSA sound

library
● Add low level setting in audio
● Add clock frequency string (useful if ANY or

UNKNOWN field is set)
● Add multispeed indication (need to patch

libsidplay2)

CGSC updates

The Compute's Gazette Sid Collection maintained by Peter Weighill has made some little up-
date in March 2009, a big one in May 2009 (26% of increase) and one in May of this year.

Now the collection contains: 8395 MUS files, 1966 STR files and 2631 WDS files

Download from: http://www.c64music.co.uk/

ACID 64 Player Pro v3.0.0-3.0.2

In May 2009, the ACID 64 Player has
released a important version of the pro-
gram, followed after by other updates.

New (3.0.0):

• Fast incremental SID file search
on title, author, year and publisher fields

11

http://www.c64music.co.uk/
http://sourceforge.net/projects/xsidplay2/
http://noname.c64.org/csdb/release/?id=76056

• Seek through SID tunes via slider bar
• Digital clock
• Scroll wheel support when hovering over grids and list boxes
• Anonymous usage statistics

Improvements (3.0.0):

• Tree view of folders
• SidID search in properties menu is done in background now to access dialog faster
• Emulation improvements
• Keyboard navigation improvements
• Many small improvements/fixes

Fixes (3.0.1)
• On some machines the index file wasn't created correctly (re-indexing is required)
• Indexing of folder with a few SIDs is fixed
• Seek speed isn't dependent anymore on fast forward limitation
• STIL and SLDB info are now working for files outside HVSC
• Minimal horizontal width isn't locked to previous width anymore

Improvements (3.0.1)

• STIL window can always be opened now and doesn't close automatically anymore
• Improved handling of SLDB entries
• Digital clock color changed
• Changed a few keyboard short cuts
• A few other small improvements/fixes

Fixes (3.0.2)
• No error anymore when last directory was a root folder
• Corrected memory bank setting for PSID tunes
• Resizing window was corrupting active row of search grids
• Minimal width is now set correctly

Improvements (3.0.2)

• Last played file is remembered now when ACID 64 is started
• When Folders tab is clicked, the current selected file will always be visible
• Special characters Ø and ø can now be searched by o or oe (re-indexing required)
• Pressing escape in search boxes will now select the text instead of clearing the input
• Selecting a search filter will change the color of the filter box
• Copy filename strips HVSCRoot automatically
• Seeking (dragging thumb) can now be cancelled by pressing escape key or by pressing

right mouse button
• Scrolling search results will now update rows immediately without releasing the thumb
• Clicking on a folder name in Folders tab will expand the folder
• Changed "Browse" tab name to "Folders"

•

Download at: http://www.acid64.com/

12

http://www.acid64.com/

HVMEC 0.9

The High Voltage Music Engine Collection ha released a new version at:
http://digilander.libero.it/ice00/tsid/hvmec.html

The collection now contains:
● 140 editors
● 84 trackers
● 70 others program

A new Wordpress version of the collection will be created at this location:
http://hvmec.hellospace.net/blog

HVSC #50

Date: May 01, 2009
After this update, the collection should contain 36,000 SID files!
This update features (all approximates):

678 new SIDs
59 fixed/better rips
573 PlaySID/Sidplay1 specific SIDs eliminated
189 repeats/bad rips eliminated
482 SID credit fixes
135 SID model/clock infos
15 tunes from /DEMOS/UNKNOWN/ identified
10 tunes from /GAMES/ identified
36 tunes moved out of /DEMOS/ to their composers' directories
11 tunes moved out of /GAMES/ to their composers' directories

As you can see, a great amount of files were eliminated in this update.
We decided to remove all the old _PSID files that have a RSID equivalent.
Those _PSID files were only hacks meant for digitized sounds to be played in Sidplay1, but not

on real C64. The _PSID files will be eliminated in every future releases as soon as new RSID ver-
sions of the same .sid files are added. For those still needing the _PSID files we have put them in
a separate archive: http://hvsc.c64.org/Downloads/C64MUSIC_PlaySID.rar

Download HVSC Update #50 from the usual address: http://www.hvsc.c64.org/

13

http://www.hvsc.c64.org/
http://hvsc.c64.org/Downloads/C64MUSIC_PlaySID.rar
http://hvmec.hellospace.net/blog
http://digilander.libero.it/ice00/tsid/hvmec.html

HVSC #51

Date: August 22, 2009

After this update, the collection should contain 36,937 SID files!
This update features (all approximates):

950 new SIDs
93 fixed/better rips
6 PlaySID/Sidplay1 specific SIDs eliminated
14 repeats/bad rips eliminated
320 SID credit fixes
159 SID model/clock infos
8 tunes from /DEMOS/UNKNOWN/ identified
6 tunes from /GAMES/ identified
38 tunes moved out of /DEMOS/ to their composers’ directories
14 tunes moved out of /GAMES/ to their composers’ directories

Download HVSC Update #51 from the usual address: http://www.hvsc.c64.org/

HVSC #52

High Voltage SID Collection Update 52
Date: December 24, 2009

Hello fellow lover of SID music!
After this update, the collection should contain 37,801 SID files!

This update features (all approximates):
874 new SIDs
65 fixed/better rips
0 PlaySID/Sidplay1 specific SIDs eliminated
12 repeats/bad rips eliminated
470 SID credit fixes
174 SID model/clock infos
17 tunes from /DEMOS/UNKNOWN/ identified
2 tunes from /GAMES/ identified
25 tunes moved out of /DEMOS/ to their composers' directories
4 tunes moved out of /GAMES/ to their composers' directories

HardSID Uno/UPlay

Two new Hardsid cards are available:
http://www.hardsid.com/

● HardSID Uno
● HardSID UPlay

Here the features for all the cards:

14

http://www.hardsid.com/
http://www.hvsc.c64.org/

HardSID Uno:Enjoy over 36000 wonderful C64 tunes in high-quality played back on a real SID
chip!

• Ideal for SID Players, C64 Emulators, SID Trackers
• USB connection (compatible with both 2.0 & 1.1)
• No power supply required! Use it with a notebook just anywhere!
• Supported by the HardSID 4U Winamp Plugin! (seeking, sub-tune handling, IR remote

controlling)
• Superior sound quality (..it is a HardSID!)
• Support for one SID chip of any version (old: 6581, new: 8580/6582)
• Updateable firmware over USB
• Drivers for Windows XP/Vista/Win7
• Cycle-accurate playback of your favorite SID tunes
• Digitized sound + high-speed playback with low CPU utilization
• Seamless playback of .sid tunes while you work on your PC

• One analog SID sound output (jack)
• USB connector for connecting the unit to a desktop PC or a Notebook

HardSID UPlay: Do you need both old and new SID versions for playback? You need the Hard-
SID UPlay then!

• You can install two SIDs in it: one old 6581 + one new 8580/6582
• Switch between the two SIDs simply from the player software
• Ideal for SID Players, C64 Emulators, SID Trackers
• USB connection (compatible with both 2.0 & 1.1)
• No power supply required! Use it with a notebook just anywhere!
• Supported by the HardSID 4U Winamp Plugin! (seeking, sub-tune handling, IR remote

controlling)
• Superior sound quality (..it is a HardSID!)
• Updateable firmware over USB
• Drivers for Windows XP/Vista/Win7
• Cycle-accurate playback of your favorite SID tunes
• Digitized sound + high-speed playback with low CPU utilization
• Seamless playback of .sid tunes while you work on your PC

• One analog SID sound output: Outputs the sound of the actually selected SID chip (jack)
• USB connector for connecting the unit to a desktop PC or a Notebook

HVSC #53

Date: June 25, 2010: After this update, the collection should contain 38,714 SID files!

This update features (all approximates):
1045 new SIDs
897 fixed/better rips
20 PlaySID/Sidplay1 specific SIDs eliminated
133 repeats/bad rips eliminated
1076 SID credit fixes
81 SID model/clock infos
23 tunes from /DEMOS/UNKNOWN/ identified
10 tunes from /GAMES/ identified
81 tunes moved out of /DEMOS/ to their composers' directories
11 tunes moved out of /GAMES/ to their composers' directories

15

TSM & Freedom Interview!
by Stefano Tognon

As this number comes out many times after the previous issue, I decided so to add many inter-
view to compensate for this ;)

I finally got two interviews from TSM and Freedom, two composers that take place to the devel-
op of Pushover game. The interview is made as “double”: (almost) same questions to all. This is a
kind of interview that is quite popular in Italian Television :)

I had used the [/] in the question to separate what is changed if the questions where a little dif-
ferent.

Hello Carmine [/] Freedom, could you introduce yourself and tell us what you do in real
life?

TSM: Hello everyone. My name is Carmine Migliaccio and I was born in Napoli, Italia, 30 years
ago. I was a computer programmer, but resigned from my job. Now I am looking for a new job and
I hope to find one that has little or nothing to do with computers.

Freedom: Hi, I am from Italy. My job deals with mechanics.

When did you start to use a C64 and why did you start to compose music using a so old
chip?

TSM: My parents bought me a Commodore 64 in 1988. It was my main computer till 1992, when I
got an Amiga 500. I used my C64 mainly to play games and, from time to time, I wrote some sim-
ple Basic programs. I also made some experiments with the SID in Basic, but at that time I didn’t
know anything about Machine Language or music editors.
My first serious attempts at making music with the C64 came much later: around 2003! That’s why
I don’t consider myself a scener nor a musician. Anyway I started to make music with the SID be-
cause I can’t play any conventional music instrument and I wanted to play one without the hassle
of practicing for years.
I had spent long time creating music modules on PC with FastTracker II but I always ended up us-
ing the same few samples for anything and that was starting to bore me. I tried to create new sam-
ples and I also found huge sample libraries on the Web, but the whole thing simply didn’t stimulate
me anymore.
The sound of the SID is the thing that most amazed me when I got my C64 back in the day and I
still think that sound is the field where the C64 is most powerful. So, sooner or later, I had to do
something with it.

Freedom: I started using a C64 when I was a kid, in late 1992. It was given to me as a gift for my
birthday. I immediately started to code with BASIC and did some little experiments with music, but
nothing worth noticing. I composed my first tune only in 2005, using Odin Tracker on VICE emula-
tor.
I think I am in SID music because of nostalgia of the great fun I had with the Commodore 64 in my
childhood. I remember I used to listen to loading and game tunes very often, without being that
much interested on the game itself.
I do love SID music because of the 3 channel limit of the SID. You should be able to make the lis-
tener believe that there are more than just 3 voices... and that's a really interesting challenge which
requires quite a different approach of that used in common music.

16

What editors have you used for composing music and what made you choose them?

TSM: Before 2003, I had made some attempts at learning some editors, but I found each of them
to be too complicated for me. Then, I found CyberTracker by Cyberbrain. It was very similar to
FastTracker II, the famous MS-DOS tracker that I knew very well. So, learning to compose music
with CyberTracker was just a matter of understanding how the SID worked. I already knew most of
it, so I could make my first tunes very soon. There was a big problem, though: the packer was (and
still is) in early beta stage. As a result, packed songs were too big and used too much rastertime.
Furthermore, due to a bug, some songs could not be packed at all. This meant that music made
with CyberTracker was almost unusable for demos, games, etc. so I stopped using it.
Later, I wanted to take a look at C64 machine language and, as an exercise, came up with my own
music routine. It’s the simplest routine one could imagine, with no effects whatsoever, no
hardrestart routine and no memory optimizations. It works fairly well and uses a laughable amount
of rastertime. I made 2 songs with it (bath.sid and willow.sid), then I lost interest.
The turning point came in 2006. Ian Coog, Roberto and Pippo79 were making a simple little game
called “Pick Up Sticks” and asked me to make a tune for it. I made it in CyberTracker, but it was
too big, so I decided to give GoatTracker a chance. About two weeks later, I had finished the new
version of the tune. Using GoatTracker was a real pleasure for me, because it has mouse support
and an interface very similar to that of FastTracker II. It is thought in a very rational way.

Freedom: I started with Odin Tracker but immediately quit using it because of its strange way of
handling filters. Also, Odin Tracker routines are not very efficient and so too much rasterlines
are required. Then I switched to Goat Tracker which is a very easy to use cross-platform SID
tracker.
In fact, now I always use Goattracker. It is easy, it is powerful, very efficient and it comes with
a good documentation.

Are there any other music editors that you would like to use in the future?

TSM: GoatTracker is pretty much everything I need. Its only flaw is that it’s a cross-tool. If there
was an editor designed for the 80-column mode of the C128, with 1351 mouse support and Fast-
Tracker-like interface, I would certainly love it.

Freedom: Maybe I would like to use a native tracker for C64 like JCH. But Goattracker just suits
my needs.

Duration based editor (like DMC, ...) vs tracker style editor (like JCH, ...): what is your opin-
ion about the two types of editors?

TSM: Well, I believe the answer is easily predictable by now. I honestly don’t understand duration
based editors, so I have no opinion about them. I really love tracker style editors, because they
match the way I think music myself.

Freedom: I absolutely prefer tracker style editors.

Have you ever thought to compose music using samples for having more that 3 channels
playing into a song?

TSM: I did think of it, but never tried.

Freedom: I actually prefer to force the 3 analog channels to create the illusion of more than 3
channels (at least, I try it, of course). However, I did a 4 channel sid tune using Pollytracker, but I
didn't release it.

17

You had produced [/] are producing some music stuff for the Pushover game (a game con-
verted from Amiga to C64, not yet released). Have you anything to tell us about this work?

TSM: Well, it was an exciting task indeed. Pippo79 and Raffox were (and still are) doing a very
professional job. I tried to get the songs as close as possible to the Amiga originals. I made some
of them from scratch and some by using format conversion tools. In the latter case, IIRC, I used
some tool to convert the MED originals to MOD. I performed some preliminary adjustments on the
MOD files, then I converted them to GoatTracker and added instruments and final corrections. The
title tune is made this way and I think it’s the only tune of mine that will appear in the final version
of the game. When I gave up for personal issues, Freedom took over as musician. This game is
gonna be something special.

Freedom: I have been doing many tunes for this game. I had a stop but I am going to continue.
This game is a really, really nice project in my opinion. Trying to port those Amiga mods is quite
fun I must say.

Have you any important music/project planned to realize in future?

TSM: No I have not. I do have one unreleased tune, though.

Freedom: No, nothing at the moment.

Now some quick final (standard) questions:
Real machine vs emulator: what do you think about it?

TSM: They both have their pros and cons. I prefer the real thing, because I like to see old electron-
ics still functioning. I also like to put my hands in the hardware and mess with it :)

Freedom: I use emulators because I don't have enough room for original hardware. However, I
think the best thing is to use both of them. For many things, emulator are far more practical, but if
you want to watch a demo I think the real machine is the next best thing around.

6581 vs 8580 chip: any (musical) preference?

TSM: Well, I prefer the 8580. It’s more versatile as it allows more combined waveforms. It is also
very consistent, as every 8580 sounds the same, unlike the 6581. Inconsistency isn’t the only
problem with 6581’s: they are very fragile. They often fail and sometimes they only work partially.
This is awful, because a user may think he has a working SID and curse the author of a tune for
the horrible sounds coming from the speakers.

Freedom: I prefer 8580 chip. Way too open filters but it features cleaner waveforms and it has less
noise. For instance, when you change filter type you don't get an unwanted noise as noticeable as
the one you hear in 6581. This makes it possible to change filter type on an instrument while a
note is being played and you get more sophisticated sounds. Also, I do love $51 waveform on
8580.

What is the worst and the better sid you composed?

TSM: Worst tune: “Q-Game”.
Best tune: don’t know, maybe “Vieni avanti cretino”, but it’s a cover.

18

Freedom: Considering released stuff, my worst sid maybe is Exploring New Worlds. My better one
is probably Dreamlights, a cover of a tune by Chris Huelsbeck originally intented to be used in Tur-
rican.

Who are your best sid authors?

TSM: The first names that come to mind are Ben Daglish, Jeroen Tel, Rob Hubbard, Tim Follin,
David Whittaker and Chris Huelsbeck.

Freedom: Musicians of commercial games: Chris Huelsbeck, Jeroen Tel and Rob Hubbard. Talk-
ing about sceners: Dane, Drax, Jeff, Linus.

What are the best sids ever in your opinion?

TSM: Krakout’s music, of course. I also like Ghouls’n’Ghosts’ title tune very much.

Freedom: Talking about scene music: I really love Arctic Circles by Dane. Dazzler by Mitch and
Dane. Special Agent Rocco Montefiori by Linus is also a very good sid in my opinion. I love Ode to
C64 by Jeff too.
From videogames, I really like ACE 2 by Rob Hubbard, Cybernoid II by Jeroen Tel... The list would
be endless I think.

Finally, many thanks for the time you gave for this interview, and now would you say
something else to the our readers?

TSM: Thank you for the opportunity. What can I say to our readers? Enjoy your life, love each oth-
er and play Pushover when it’s out! Byez!!

Freedom: I wish I had enough time to enjoy C64 music as much as I want... I hope I'll be able to re-
lease new stuff in the near future. Bye!

19

JITT64 Tracker
by Stefano Tognon <ice00@libero.it>

JITT64 (Java Ice Team Tracker) is my C64 cross-platform music tracker. It is written in Java for
being portable and use JSidPlay library for sound reproduction.

It is born with the idea to have a very freedom instrument implementation, using full features ta-
bles. Essentially you can have an instrument that use up to 2KB of data for its definition as the ta-
bles are not shared between instruments (only the packer will apply optimization in tables if possi-
ble for reduce space usage).

Due to this, the player is very rastertime consuming, but maybe you could be able to write even
up to 4X tune with the editor.

In this article we will see how the editor works and in the next we will look even from the inside
of his implementation, but remember that the program has an hypertext help that describe the pro-
gram in all of his aspect.

Main screen

The application is composed by a big screen that is divided into 4 regions:
● song panel
● track panel
● pattern panel
● instrument panel

20

mailto:ice00@libero.it

The song panel is where you can enter some information about the tunes you are composing:
● Name (of the songs)
● Author
● Copyright
● Speed of tunes (all tunes and voices have the same speed)
● Number of tunes
● Type of sid chip to use for these tunes

The track panel is divided into 3 rows (one for each voices) and contains the patterns and com-
mands to execute for the song you are editing. It has even buttons for playback reproduction of
the tune and a semaphore that indicate if the tune is ready to be played.

The pattern panel is divided into 3 sub-column regions: one for each voices and then you can in-
sert the event (note/instrument/command) for each ticks. The tempo and dimension of the pattern
can be selected independent from each one.

The instrument panel is composed by a upper region where you can insert some informations:
● Name (of instrument)
● Note (a comment about an instrument)
● Hard-restart/restart of note information

It has even a middle part where there is a big tables of values (that give the timbre of the instru-
ment) and in a low part that is a piano roll, useful for testing the instrument.

Tracks

The tracks that compose a tune is entered into the above panel. The upper row is for voice 1,
the middle for voice 2 and the lower row for voice 3.

In a cell of the table you can enter 4 type of commands (available with the right click of mouse):

Value Description

0..222 This is the number of pattern to play

REP Repetition command. This command is for repeat a number of time the next
commands. Unlike usual command, in JITT64, you can specify a sequence
of commands to repeat. Dimension is 16, while the number of repeat is from
2 to 17

TR Transpose command. Transpose can goes from -15 to + 15 steps. When
you set a transpose, all the patterns that come after are transposed of that
quantity.

RST Restart command. This is always the last command in the track and it is for
inserting the point (index in table) where we want to have the tune to restart.
We can even let the tune finish without restarting.

21

The best way to see the commands in action is with some examples:

In the first voice, the pattern 0, 1 and 2 are play in sequences, then voice stops to play. In the
second voice, pattern 0 is play at expected rate, than it is played 1 half step over, and then 1 half
step below. This sequence restarts forever. In the last voice, the pattern 0, 1, and 2 are played two
times in sequence, then the sound for this voice ends.

Pattern

The pattern panel is composed
by 3 equals sub-panel: one for
each voice.

In JITT64 I choose to have that
each pattern has his tempo and
his dimension. Although the di-
mension is quite common to be
different for different patterns, the
tempo is usually set by command.

With the JITT64's option you
can set the tempo and pattern di-
mension to use by default.

In the sub-panel you have the
splitter (and buttons) for selecting
the pattern to edit, the splitter for
selecting the octave to use for
keyboard notes insertion and the
checkbox for mute/unmute the
voice when playing.

In the pattern table there are
tree columns:

1. Notes
2. Instruments
3. Commands (with parameters)

Using right click you can open the menu to insert the notes/instrument/command to play at that
time tick. It is also possible to insert notes with keyboard using Protracker or DMC mode.

With the same mouse key it is also possible to cut/copy/paste/clear selection from one pattern
to another and load/save the pattern from/to a file

In JITT64 now it is implemented 16 commands, but more are planned to be added in future ver-
sions:

22

N Command Description

00 Stop Command If parameter is not zero, this apply a stop action for the bit-
field commands:

● bit 0: stop Arpeggio

● bit 1: stop Portamento up

● bit 2: stop Portamento dn

● bit 3: stop Tine Portamento

● bit 4: stop Vibrato

● bit 5: stop Pulse up

● bit 6: stop Pulse dn

01 Set Tempo Set the tempo to use from this position in pattern. There is
even the possibility to use the global (the one specify into the
pattern spinner)

02 Set Attack/Decay Set the attack/decay to use for the current voice

03 Set Sustain/Release Set the sustain/release to use for the current voice

04 Set Volume Set the volume of the tune. Volume starts at 15 at the
initialization of tune.

05 Set Arpeggio Set the arpeggio. There is a speed to choose for the arpeggio
and two tone to add to base note and second note.

06 Set Portamento up Set the amount (*2) of frequency to add for portamento up
effect

07 Set Portamento dn Set the amount (*2) of frequency to subtract for portamento
down effect

08 Set Tone Portamento Set the amount (*2) of frequency to add/subtract for a tone
portamento effect.

09 Set Vibrato Set the speed and the amount (*16) of frequency variations
for a vibrato effect

0A Set Pulse Slide up Set the amount of variations for a slide up of duty cycle

0B Set Pulse Slide dn Set the amount of variations for a slide down of duty cycle

0C Set Auto Fade out Automatically fade out the volume with the given delay

0D Set Filter Type Set the filter type (high, middle, low) and voice where to use

0E Set Filter Resonance Set the filter resonance to use

0F Set Filter Cut off Set the filter cut off to use

10 Set Gate Sustain/Release Set the sustain/release to use for current voice, but with gate
release (you can go up in volume level)

Future command that will be implemented are:
● Hardrestart command: This will trigger an hard restart in next note even if instrument did

not have it
● Pointer command to instrument This is for activate an effect in an instrument at level

pattern. Note that this already works using instrument, but is not so intuitive
● Hifi portamento A portamento independent from octave/note
● Hifi vibrato A vibrato independent from octave/note
● Vibrato slider Automatically increase of frequency in vibrato

23

Instruments

The instrument window is the most complex of JITT64 as it is for creating the timbre of instru-
ments. It has a upper part with some information about the kind of restart of note to use, a middle
part with tables of values and a low part with a piano roll (for test the instrument, but it is not jet ac-
tivated into the program).

Looking for the restart of note, there are tree kind of methods you can choose:
● Never use an action

If you did not check the Hard Restart and Gate off fields, no action is taken when a new
note start (so, all is left to you for preventing ADSR bugs).

● Gate off
If you check the Flag off field, then the gate bit of sid register is released before the end of
the note. How many ticks before this happen is given by the number you inserted into N.
ticks. Read the notes below for more information about this.

● Hard Restart
If you check the Hard Restart field, then those actions are taken before the end of the note
(even here using the N. ticks for the timing):

• Attack/Decay HR: this value is put as Attack/Decay when is time to start the HR
• Sustain/Release HR: this value is put as Sustain/Release when is time to start the

HR
• First Control HR: this value is put as Control when is time to start the HR
• Second Control HR: this value is put as Control when there is the last tick before

the new note comes
So, you can set all the values you want for having the HR.

The number of ticks you enter into the field have meaning that depend by the timing scale you
choose into pattern. Here some examples:

● Pattern Timing 5, Number of ticks 2: effective ticks are 2
● Pattern Timing 5, Number of ticks 4: effective ticks are 4
● Pattern Timing 3, Number of ticks 4: effective ticks are 3

24

This is for taking easier to test for Hard Restart when a pattern is finish and a new one (that
could or not containing a new note) is reached.

The last choice you have (but that affect all the actions for this instrument) is the order you want
that sid registers will be written:

● Wave – ADSR: Wave register is writing before Attack/Decay/Sustain/Release
● ADSR – Wave: Attack/Decay/Sustain/Release are writing before the Wave register

This things if for letting you obtain good hardrestart (some one need accurate write timing to be
achieved).

If you are wondering how to obtain and hard restart that use the test bit, you have two ways:

● Use Hard Restart features, setting AD/SR to use into HR, then make the first control regis-
ter with the gate bit released. The second one need to be $09 (test bit + gate on). Use at
least 2 ticks and set write order as ADSR-Wave

● Use Hard Restart features, setting AD/SR to use into HR, then make the first and second
control register with the gate bit released. Use at least only one ticks. Then into the fist row
of instrument table, set ADSR as you want for your instrument and the first wave as $09
(test bit + gate on). Set write order as ADSR-Wave. After this you will start the wave you
need for your instrument.

The main part where you create the timbre of the instrument is the big middle table. It has 127
rows of commands and couples of columns for specific aspect of sid sound. Couple of column are
differentiated by having two different colors. You can add a new cell using the Ins key and remove
one using the Canc key. With the right click of the mouse in a column, you open a sub menu for
enter values.

● D/N Delay/Number of Repeat (sometimes called D/R)
This is common to all the couple of columns. With the first number you specify how long will
take the delay between two commands to be executed. The second number specifies how
many times the command will be executed in sequences. Example:

● 0|0 the most used: no delay and no repeat (the command is executed into one tick)
● 2|0 Command has a delay of 2 ticks after his execution (and no repeat, so next

command will start after 3 ticks)
● 2|3 Command has a delay of 2 ticks after his execution, but then it is repeated for 3

times. So the next command starts after (2+1)*(3+1)=12 completed ticks.
● AD Attack/Decay

Here you can specify the attack/decay to use for the instrument. Values goes from $00 to
$FF and are to be insert in hex.

● SR Sustain/Release
Here you can specify the sustain/release to use for the instrument. Values goes from $00
to $FF and are to be insert in hex.

● Wave
Here you can specify the wave (control register) to use for the instrument. Values goes
from $00 to $FF and are to be insert in hex.

● Frequency
Control the frequency (notes) to put into sid registers. The right-click menu contains four
options:

● Insert absolute note
The table that is opened contains all the 8-octave notes you can use. Them are
hard-coded into the player so you cannot change the frequency for one note, with
the exception that you can choose from 4 kind of tables in Option that differs only
by the middle A4 note: 424, 434, 440, 442Hz.

● Insert relative note
In the table that is opened there are relative values to add or subtract from the

25

note the instruments was activated by the pattern that is using the instrument. It is
always related to notes in the pattern, for example if you use an absolute note of
the case above, this is not the note used for adding or subtracting the value.
Those values are hard-coded into the player and cannot be varied. They varied
from 0 to 31 so about +/- 2,5 octave from the note of the pattern. The value of
Note+0 is to use if you want to maintain the actual note played by the pattern.

● Insert relative frequency
In the table that is opened you can choose relative values of frequencies to add or
subtract from current frequencies the sid was used. Value of +/- 0 can be used for
taking the actual frequency the sid is working. This command can be used for cre-
ating vibrato or portamento at the instrument level. The values to add/subtract go
from 0 to 32768 and you can change them using the Tables view icon/menu com-
mand.

● Insert absolute frequency
In the table that is opened you can choose fixed values of frequencies to put di-
rectly into sid register. The 0 value is useful if you want to play silent. The values
go from 0 to 32768 and you can change them using the Tables view icon/menu
command.

● Pulse
Control the pulse generation for $41 waveform.
The right-click menu contains two options:

● Insert fixed pulse value
With this it is open a sub-table where you can choose the fixed values (from
0..2048 that you can change using the Tables view icon/menu command) that are
to be putted into pulse registers of sid.

● Insert relative pulse value
With this it is open a sub-table where you can choose the relative (positive or neg-
ative) value to add/subtract from current value of the pulse registers. Values can
be varied using the Tables view icon/menu command

● Filter Cut-off
Set the filter cut-off frequency.
The right-click menu contains two options:

● Insert relative frequency With this it is open a sub-table where you can choose
the relative cut-off frequency to add/subtract from the current value. You can
change the values using the Tables view icon/menu command.

● Insert absolute frequency Whit this it is open a sub-table where you can choose
the absolute frequency to put into sid registers. Values can be varied using the
Tables view icon/menu command

● Filter Resonance
Set the filter resonance value.
The right-click menu contains one option:

● Insert value With this it is open a sub-table where you can choose:
● Fixed value of resonance to put to sid register
● Value to add to current resonance
● Value to subtract to current resonance

The values go from 0 to 15 and are hard-coded into the player, so they cannot be changed.
● Filter type

Set the filter type to use and the voices where apply filter.
The right-click menu contains one option:

● Insert type
In the dialog that it is opened containing checkboxes, you can choose:
● High pass filter
● Band pass filter
● Low pass filter
● Filter active in voice 3
● Filter active in voice 2

26

● Filter active in voice 1
● Common part

At each right-click in a column different by D/N, the first two option available are:
● Set step to here

It takes the position where you right-click the one for repeating the sequence of
commands where the last is executed. You will see that all the commands that re-
peats are now colored.

● Set no step
It remove the position for repeating sequence, and so when the last command is
executed, no one for this column will be performed by the player, until the instru-
ment restart by tracker command.

If the step is defined, the number of repeat can be chosen by right-clicking the last row of
D/N column. You have a fixed table with values from 1 to 255 and the inf one. With inf you
specify that the repeat is forever.

Table of Values

For changing the values you see into sub-menu, you have to open the Table of values for in-
struments.

In this big screen are reported all the used tables for one instrument. Red values are the one
you have used into the instrument definition, the Blacks are the ones not yet used.

27

Filling this tables of values are the most tedious work for you (and as these tables are not
shared, this operation is to be done for each instrument), but this is what we have to pay for hav-
ing freedom in implementing one instrument.

The tables are pre-filled with some custom values and in future I will add some configuration
wizard that will help you filling it. Else, I will make that you can vary one value when you are into in-
strument main table, without need to open this screen.

Take present that each of this table can be loaded/saved in/from file, so you can create one ta-
ble library to use.

Instrument examples

At this point I like to show some example of instrument implementation, so you can figure better
how this task look like in JITT64.

SEA effect

A simple sea effect. It not used any hard-restart of note: only AD/SR and fixed wave/frequency
are used. The sea is obtained from the use of noise with very long Attack/Decay without a
Sustain level left in volume.

Emil's String

This is an example of a String instrument from Emil music. First of all it use a sort of arpeggio for
giving more tones to the voice, else it gives a big “vibrato” to the pulse of rectangular waveform.
Even if gate of note is released, the slow release time is compensated by an hardrestart of note
with only one tick of delay.

28

Oriental flute

This is an oriental flute with an high pitch at beginning and a incremental vibrato in the main part.
It needs an hard-restart for a best note starting.

Bass Drum

A bass drum with fixed notes and lot use of noise waveform

29

Bass drum

Another bass drum that use more low pitch notes and less noise

Filtered bass drum

A filtered bass drum that depends from pattern note in all unless the fixed drum effect. There is
a “portamento” onto the pulse of rectangular waveform and the filter dynamically changes the cut
off frequency.

Matt Gray's bass

A bass from Matt Gray music. There is a vibrato in pulse width.

30

Dane's lead

An example of Dane's short lead sound. It uses hardrestart of note and a “portamento” in pulse

Dane's lead

Another example of Dane's short lead sound. It uses hardrestart of note and a “vibrato” in pulse

Matt Gray's snare drum

An example of Matt Gray's snare drum. It uses fixed notes and noise waveform.

31

Matt Gray's snare drum

Another example of Matt Gray's snare drum. It uses fixed notes and it is less hard of the
previous.

Conclusion

What you read here is just an introduction about the use of JITT64. As JITT64 is a work in
progress project, you will find that the actual developed version has more improvements in lot of
points.

For example it has a conditional compilation that remove the code that in not used in player, for
saving rastrer time. Else it has the support for MIDI music keyboard for simplifying the use of piano
roll (you can even insert notes in pattern with your MIDI keyboard). Finally there is a Goattracker2
instrument import for let you use even instrument you make for Goattracker2.

For long term, it is planner do add even a digi track to the player, but now it is too early for dis-
cuss about this...

Check the program here: http://sourceforge.net/projects/jitt64/

32

http://sourceforge.net/projects/jitt64/

Inside JITT64
by Stefano Tognon <ice00@libero.it>

With this other article onto JITT64, I want to go inside it and show many of low level details
about the player. It is better that you read the previous article to have a background about the
tracker, before read this one.

Init &Play (IRQ) routine

Each player has almost the same structure:
● There is a initialization routine that set up

the player for playing a given tune.
● There is the play routine that must be

called by an IRQ event each frame (or at
a given slice of scheduled time) for gen-
erating the sound.

In JITT64 the initialization routines will clear all
the used memory locations of the player and
starts to read the first pattern of the track of the
given tune. The later was a choice for reducing
the code that is used inside the IRQ play routine.
The initialization even set the volume to maxi-
mum level.

The play routine starts with a loop of instruc-
tions that are repeated to all the tree voices
(from voice 3 to voice 1). The porpoise of that
instructions is to generate the sid values that are
to be put into the chip register, according to the
tracker rules. In the player there are many vari-
ables called shadow_xx (where xx is one abbre-
viation for the sid registers, like FH, FL, and so
on) that will store the values that are to be
putted into the sid. Only at the end of player cal-
culation those values are putted into the sid chip
(look at the Shadow -> SID block) all in one
passed, so there is not distortion in sound gen-
eration for that voice.

At the end of the main loop, there is the last
block of instructions (Shadow global -> SID
block) that will put the latest 4 registers of the
sid chip that are common to all the 3 voices (like
filter and volume).

The instructions that generate the sound for a
sid voice can be grouped into:

● Play Pattern: decode and execute one
row in pattern

● Play Instrument: play the instrument core
● Play Command: play one command of

the pattern

33

mailto:ice00@libero.it

Before analyzing all the blocks in more details
there are some words to say about them:

● Play Pattern is executed only when the tem-
po associated to the pattern is over. So, if
you have a tempo of 7 set into a pattern row,
the routine is executed only after 7 IRQ call-
ing. In fact, this routine has to decode the
notes/instruments/command of one row pat-
tern and activate them.

● Play Instruments and Play Command are ex-
ecuted at each IRQ calling as they have to
generate the instrument timbre and the com-
mands execution flow of the music.

● It is very important that Play Pattern is exe-
cuted before the others blocks, otherwise
there will be a delay of one frame when a
new note/instrument/command is to be acti-
vated, and this will cause some sound prob-
lems (as some part of the player continues
with the old setting, and some part will start
with the new one).

Even if the proposed structure of IRQ seems very
linear, it suffers of some timing problems and it was
changed to a similar form that is showed in the next
diagram. The problem with the initial used engines is
that the 3 voices are not outputted at the same time
as the Play Pattern, Play Instruments, and Play
Command will take some variables time in execution
and so the 3 voices will starts play with many cycles
of delay (and this can cause some hard-restart of
note problem too). In fact, one of the missing block
in first diagram is Play Hard-Restart that are to be
executed after all the other blocks, as if an hard-
restart of note condition is reached, it had to take
control on sid output over the others commands.

The new structures is formed by:
● Shadow register are outputted the same time

at the start of irq routine: this granted that at
every frames the sid registers are updated
all together

● The execution of player behaviors is after
having updating the sid registers, so there is
no problem in how many cycles this will take

The only side effect of this new structures is that
sound output is always one frame later his calcula-
tion. This could not be a right thinks if you are cod-
ing a demo where sound is to be synchronized with
graphics, but JITT64 is born for write only music, so
this is not a problem.

34

Play Pattern

Play Pattern (pl_play_pattern) has to decode the next pattern value of note/instrument/com-
mand/parameter so it is divided into 4 parts. In order to follow it, we need to know that some vari-
ables store the action to give (at a bit level):

BIT actCommand2 activeCommand actCommand3

1 AD Arpeggio Gate SR

2 SR Port. Up

3 Key ON Port. Dn

4 Key OFF Tone-Port.

5 REST Vibrato

6 Filter Type Slide Up

7 Filter Resonance Slide Dn

8 Filter Cut Off

Play Pattern is so divided into this 4 parts:
1. decode note (or command for note)
2. decode instrument to use
3. decode command to perform
4. decode parameters to use for command

The first block is code as this:

;=================================
; play the pattern
;=================================
pl_play_pattern:
 lda #0
 sta actCommand2,x ; clear actual command 2

 lda pattTempo,x ; restore tempo with saved one
 sta pattDelay,x

 inc pattIndex,x ; increment pattern index
 ldy pattIndex,x ; read index

 TBLR pattPoint1 ; read the value of note

 cmp #PAT_END ; end of pattern reached ?
 beq nextPattInTrack

 cmp #PAT_NULL ; null value ?
 beq executeB2

 cmp #PAT_KON ; key on ?
 bne testKOff

 lda #4
 sta actCommand2,x ; put key on command
 jmp executeB2 ; execute byte 2

testKOff:
 cmp #PAT_KOFF ; key off ?
 bne testRest

 lda #8
 sta actCommand2,x ; put key off command
 jmp executeB2 ; execute byte 2

testRest:
 cmp #PAT_REST
 bne isNote

 lda #$10

35

 sta actCommand2,x ; put rest command
 jmp executeB2 ; execute byte 2

isNote:
 clc
 adc trackTransp,x ; add the transpose for this pattern
 sta actNote,x ; store the value in actual note
 tay
 lda frequencyLo,y
 sta shadow_FL,x

 lda frequencyHi,y
 sta shadow_FH,x

 lda #0
 sta activeCommand,x ; stop all pattern command
 jmp executeB2 ; execute byte 2

exitPP:
 rts

nextPattInTrack:
 jsr pl_read_track

 lda stopTrack,x ; if no more track, exit
 bne exitPP

 jmp pl_play_pattern

You can so see that it is test for:
1. Pattern end
2. Pattern null
3. Key on
4. Key off
5. Rest
6. Note

and then take the appropriate action.

The second block is very tiny:

;=================================
; execute byte 2 (instruction)
;=================================
executeB2:
 ldy pattIndex,x ; read index (again)
 TBLR pattPoint2 ; read the value of instrument
 beq executeB3 ; skip if zero

 jsr pl_new_instr ; set up a new instrument

It just initialize instrument, if instrument is used.
In block 3, commands are decoded and if needed parameters are decoded too.

;=================================
; execute B3 (command)
;=================================
executeB3:
 ldy pattIndex,x ; read index (again)
 TBLR pattPoint3 ; read the value of command
 sta actCommand,x

 ;ldy pattIndex,x ; read index (again)
 TBLR pattPoint4 ; read the value of param
 sta actParam,x

 ; check for all possible commands and initialize them
 ldy actCommand,x ; read command in y
 cpy #CMD_STOP ; test for stop command
 bne chk_next0

 cmp #0
 beq exitPP

 eor #$FF
 and activeCommand,x
 sta activeCommand,x
 rts

36

;=======
; Set Tempo
;=======
chk_next0:
 cpy #CMD_TEMPO ; test for set tempo
 bne chk_next1

 cmp #0
 beq setNT

 sta pattTempo,x ; store new pattern tempo to use
 sta pattDelay,x
 rts

setNT:
 ldy #0
 TBLR pattPoint1 ; read pattern value
 sta pattTempo,x ; set the pattern tempo for the pattern
 sta pattDelay,x
 rts

;=======
; Set AD
;=======

chk_next1:
 cpy #CMD_AD ; test for set atack/decay
 bne chk_next2

 sta cmdADSR,x ; store in command AD reg.

 lda #1 ; set for a AD in next command play routine
 sta actCommand2,x
 rts

;=======
; Set SR
;=======

chk_next2:
 cpy #CMD_SR ; test for sustain/release
 bne chk_next3

 sta cmdADSR,x ; store in command SR reg.

 lda #2 ; set for a SR in next command play routine
 sta actCommand2,x
 rts

;========
; Set Volume
;========

chk_next3:
 cpy #CMD_VOL ; test for volume
 bne chk_next4

 sta shadow_VOL ; store in shadow volume reg.
 rts

;========
; Set Arpeggio
;========

chk_next4:
 cpy #CMD_ARP ; test for arpeggio
 bne chk_next5

 sta actParam,x

 rol ; isolate the speed
 rol
 rol
 and #$03
 sta speedArpeggio,x
 sta speedRelArp,x

 lda actParam,x
 lsr
 lsr
 lsr
 and #$07
 clc
 adc actNote,x
 sta note1Arpeggio,x ; store first arpeggio note

 lda actParam,x
 and #$07

37

 clc
 adc note1Arpeggio,x
 sta note2Arpeggio,x ; store second arpeggio note

 lda #$01
 ora activeCommand,x ; activate arpeggio effect
 sta activeCommand,x

 lda #0
 sta posArpeggio,x
 rts

;========
; Set Port. up
;========

chk_next5:
 cpy #CMD_PUP ; test for portamento up
 bne chk_next6

 sta freqPortUp,x ; store freq. for portamento up

 lda #$02
 ora activeCommand,x ; activate portamento up
 sta activeCommand,x
 rts

;========
; Set Port. dn
;========

chk_next6:
 cpy #CMD_PDN ; test for portamento dn
 bne chk_next7

 sta freqPortDn,x ; store freq. for portamento dn

 lda #$04
 ora activeCommand,x ; activate portamento dn
 sta activeCommand,x
 rts

;========
; Set Tone Port.
;========

chk_next7:
 cpy #CMD_TPO ; test for tone portamento
 bne chk_next8

 sta freqTonePort,x ; store freq. for tone portamento

 lda #$08
 ora activeCommand,x ; activate toneportamento
 sta activeCommand,x

 lda #00 ; suppose to have a up direction
 sta toneDir,x

 lda shadow_FH,x ; store tone frequency to reach
 sta tone_FH,x
 lda shadow_FL,x
 sta tone_FL,x

 lda copy_FL,x ; store the copy as the freq. to start from
 sta shadow_FL,x
 lda copy_FH,x
 sta shadow_FH,x

 cmp tone_FH,x ; test the high freq. of toneport. for dir.
 beq testLow
 bcc chk_next8
 inc toneDir,x ; invert direction
 bne chk_next8

testLow:
 lda copy_FL,x ; test the low freq. of toneport. for dir.
 cmp tone_FL,x
 bcc chk_next8
 inc toneDir,x ; inver direction

;========
; Set Vibrato
;========

chk_next8:
 cpy #CMD_VIB ; test for vibrato
 bne chk_next9

38

 pha
 and #$0F
 sta vibSpeed,x ; store vibrato speed
 pla
 and #$F0
 clc
 adc #$10
 sta vibFreq,x ; store vibrato frequency
 inc vibSpeed,x ; increment speed (0 is end mark)

 lda vibSpeed,x
 sta vibSpeed2,x ; load second speed
 lda #00
 sta vibSpeed1,x ; reset first speed

 lda #$10
 ora activeCommand,x ; activate vibrato
 sta activeCommand,x
 rts

;========
; Set Slide Up
;========

chk_next9:
 cpy #CMD_SUP ; test for slide up
 bne chk_next10

 sta slideUp,x ; store slide up value

 lda #$20
 ora activeCommand,x ; activate slide up
 sta activeCommand,x
 rts

;========
; Set Slide Down
;========

chk_next10:
 cpy #CMD_SDN ; test for slide down
 bne chk_next11

 sta slideDn,x ; store slide down value

 lda #$40
 ora activeCommand,x ; activate slide down
 sta activeCommand,x
 rts

;========
; Set Auto Fade out
;========

chk_next11:
 cpy #CMD_AFO ; test for auto fade out
 bne chk_next12

 sta autoFadeOut,x ; store auto fade out value
 sta actualFadeOut,x ; store auto fade out value
 rts

;========
; Set Filter type
;========

chk_next12:
 cpy #CMD_FTY ; test for filter type
 bne chk_next13

 sta cmdFilter,x ; store filter params
 lda #$20
 sta actCommand2,x
 rts

;========
; Set Filter resonance
;========

chk_next13:
 cpy #CMD_FRE ; test for filter res.
 bne chk_next14

 sta cmdFilter,x ; store filter resonance
 lda #$40
 sta actCommand2,x
 rts

39

;========
; Set Filter cut off
;========

chk_next14:
 cpy #CMD_FCU ; test for filter cut off
 bne chk_next15

 sta cmdFilter,x ; store filter resonance
 lda #$80
 sta actCommand2,x
 rts

;=======
; Set Gate SR
;=======

chk_next15:
 cpy #CMD_GSR ; test for gate sustain/release
 bne exitExecute

 sta cmdADSR,x ; store in command SR reg.

 lda #1 ; set for a Gate SR in next command play routine
 sta actCommand3,x

exitExecute:
 rts

Instruments definition

As JITT64 can handle up to 255 instruments, the declaration of it into the code is actuating by
using macro code:

; Instrument definition (filled according to actual number of instruments)

 .mac ins_instr
 .if (NUM_INSTR> ({1}-1))
instr{1}:
 .byte INSTR_HR_{1}
 .byte INSTR_AD_{1}
 .byte INSTR_SR_{1}
 .byte INSTR_CTRL1_{1}
 .byte INSTR_CTRL2_{1}
 .byte <instrAD_{1} , >instrAD_{1}
 .byte <instrSR_{1} , >instrSR_{1}
 .byte <instrWave_{1} , >instrWave_{1}
 .byte <instrFreq_{1} , >instrFreq_{1}
 .byte <instrPulse_{1} , >instrPulse_{1}
 .byte <instrFilter_{1} , >instrFilter_{1}
 .byte <instrRes_{1} , >instrRes_{1}
 .byte <instrType_{1} , >instrType_{1}
 .byte <instrFixFreq_{1} , >instrFixFreq_{1}
 .byte <instrRelFreq_{1} , >instrRelFreq_{1}
 .byte <instrFixPulse_{1} , >instrFixPulse_{1}
 .byte <instrRelPulse_{1} , >instrRelPulse_{1}
 .byte <instrRelFilter_{1} , >instrRelFilter_{1}
 .byte <instrFixFilter_{1} , >instrFixFilter_{1}
 .byte <instrDelay_{1} , >instrDelay_{1}
 .byte <instrRepeat_{1} , >instrRepeat_{1}
 .endif
 .endm

The macro needs the number of instrument to define as a parameter and will declare all the
pointers to the used table of values. It is the packer that will add the tables of instruments at run-
time when you pack the tune. Only the max number of instrument used (NUM_INSTR) is passed
by the packer, so there is conditional code that test it.

When a new instrument is used, those values are copied to many variables:

instrPtrAD_L: .byte $00 ; (low) pointer to instrument table AD
instrPtrAD_H: .byte $00 ; (high) pointer to instrument table AD

40

instrPtrSR_L: .byte $00 ; (low) pointer to instrument table SR
instrPtrSR_H: .byte $00 ; (high) pointer to instrument table SR
instrPtrWave_L: .byte $00 ; (low) pointer to instrument table Wave
instrPtrWave_H: .byte $00 ; (high) pointer to instrument table Wave
instrPtrFreq_L: .byte $00 ; (low) pointer to instrument table Freq
instrPtrFreq_H: .byte $00 ; (high) pointer to instrument table Freq
instrPtrPulse_L: .byte $00 ; (low) pointer to instrument table Pulse
instrPtrPulse_H: .byte $00 ; (high) pointer to instrument table Pulse
instrPtrFilter_L: .byte $00 ; (low) pointer to instrument table Filter
instrPtrFilter_H: .byte $00 ; (high) pointer to instrument table Filter
instrPtrRes_L: .byte $00 ; (low) pointer to instrument table Res
instrPtrRes_H: .byte $00 ; (high) pointer to instrument table Res
instrPtrType_L: .byte $00 ; (low) pointer to instrument table Type
instrPtrType_H: .byte $00 ; (high) pointer to instrument table Type
instrPtrFixFreq_L: .byte $00 ; (low) pointer to instrument table Fix Freq
instrPtrFixFreq_H: .byte $00 ; (high) pointer to instrument table Fix Freq
instrPtrRelFreq_L: .byte $00 ; (low) pointer to instrument table Rel Freq
instrPtrRelFreq_H: .byte $00 ; (high) pointer to instrument table Rel Freq
instrPtrFixPulse_L: .byte $00 ; (low) pointer to instrument table Fix Pulse
instrPtrFixPulse_H: .byte $00 ; (high) pointer to instrument table Fix Pulse
instrPtrRelPulse_L: .byte $00 ; (low) pointer to instrument table Rel Pulse
instrPtrRelPulse_H: .byte $00 ; (high) pointer to instrument table Rel Pulse
instrPtrRelFilter_L: .byte $00 ; (low) pointer to instrument table Rel Filter
instrPtrRelFilter_H: .byte $00 ; (high) pointer to instrument table Rel Filter
instrPtrFixFilter_L: .byte $00 ; (low) pointer to instrument table Fix Filter
instrPtrFixFilter_H: .byte $00 ; (high) pointer to instrument table Fix Filter
instrPtrDelay_L: .byte $00 ; (low) pointer to instrument table Delay
instrPtrDelay_H: .byte $00 ; (high) pointer to instrument table Delay
instrPtrRepeat_L: .byte $00 ; (low) pointer to instrument table Repeat
instrPtrRepeat_H: .byte $00 ; (high) pointer to instrument table Repeat

Having this structured of pointers for instrument tables, a new macro is used when it is needed
to read one value from the table:

;================================
; Read the value of passed table
; pointer of voice x with the y
; index
;================================
 .MAC TBLR
 lda {1}_L,x
 sta ADDR_LOW
 lda {1}_H,x
 sta ADDR_HIGH
 lda (ADDR_LOW),y
 .ENDM

So, for example:

 TBLR instrPtrPulse

it will read one byte from the instrument pulse table at position given by of the y register of the
voice given by x register.

Play Instrument

The main block about play instrument in the diagram is mapped to one routine in the player
code: pl_intr_core

;==================================
; Player instrument core: called
; at each ticks. It executes all
; the tables core
;==================================
pl_intr_core:
 jsr pl_instr_core_AD
 jsr pl_instr_core_SR
 jsr pl_instr_core_Wave

41

 jsr pl_instr_core_Freq
 jsr pl_instr_core_Pulse
 jsr pl_instr_core_Filter
 jsr pl_instr_core_Res
 jsr pl_instr_core_Type
 rts

Essentially it calls the execution of all the tables that compose an instrument: AD, SR, Wave,
Frequency, Pulse, Filter, Resonance and Type.

;==================================
; Attack/Decay instruction core
;==================================
pl_instr_core_AD:
 pl_instr_core_ AD, 1

;==================================
; Sustain/Release instruction core
;==================================
pl_instr_core_SR:
 pl_instr_core_ SR, 2

;==================================
; Wave instruction core
;==================================
pl_instr_core_Wave:
 pl_instr_core_ Wave, 3

;==================================
; Freq instruction core
;==================================
pl_instr_core_Freq:
 pl_instr_core_ Freq, 4

;==================================
; Pulse instruction core
;==================================
pl_instr_core_Pulse:
 pl_instr_core_ Pulse, 5

;==================================
; Filter instruction core
;==================================
pl_instr_core_Filter:
 pl_instr_core_ Filter, 6

;==================================
; Resonance instruction core
;==================================
pl_instr_core_Res:
 pl_instr_core_ Res, 7

;==================================
; Type instruction core
;==================================
pl_instr_core_Type:
 pl_instr_core_ Type, 8

All this is done by a big macro (pl_instr_core_) that receive two parameters: the kind of table to
use and a number for let implementing conditional code based onto table. Inside it, another macro
(OUTV) is used for output the value according to the actual table:

;===================================
; Macro for instruction core
;===================================
 .mac pl_instr_core_
 ldy actIndex_{1},x ; is first time with the instrument?
 bne cont_IC_{1}

 TBLR instrPtr{1} ; read values
 sta dimension_{1},x ; save the dimension of table

 iny

42

 lda (ADDR_LOW),y ; read value
 sta allowRepeat_{1},x ; save repeat information
 iny
 lda (ADDR_LOW),y ; read value
 sta stepPos_{1},x ; save step position

 iny
 tya
 sta actIndex_{1},x ; store actual index

 lda dimension_{1},x ; if table is empty, exit
 beq exit_IC_{1}

 lda (ADDR_LOW),y ; read values
start_IC_{1}:
 OUTV {1}, {2} ; out value

ecount_IC_{1}:
 iny
 lda (ADDR_LOW),y ; read delay repeat from table
 tay
 TBLR instrPtrDelay ; read delay from table
 sta actDelay_{1},x ; store in actual delay
 TBLR instrPtrRepeat ; read repeat from table
 sta actRepeat_{1},x ; store actual repeat

exit_IC_{1}:
 rts ; exit

cont_IC_{1}:
 lda dimension_{1},x ; if table is empty, exit
 beq exit_IC_{1}

 lda actDelay_{1},x ; read actual delay
 beq cont1_IC_{1} ; if zero go away with repeat

 dec actDelay_{1},x ; decrement actual delay
 rts ; exit

cont1_IC_{1}:
 lda actRepeat_{1},x ; read actual repeat value
 beq cont2_IC_{1} ; if zero go away with next index in table

 TBLR instrPtr{1} ; read values
 OUTV {1}, {2} ; out value

 iny
 lda (ADDR_LOW),y ; read delay repeat from table
 tay
 TBLR instrPtrDelay ; read delay from table
 sta actDelay_{1},x ; store in actual delay
 dec actRepeat_{1},x ; decrement actual repeat
 rts ; exit

cont2_IC_{1}:
 lda actIndex_{1},x ; test if actual position is over dimension
 cmp dimension_{1},x
 bcs cont3_IC_{1}

 inc actIndex_{1},x ; increment actual index
 inc actIndex_{1},x ; increment actual index
 ldy actIndex_{1},x
 TBLR instrPtr{1} ; read values
 OUTV {1}, {2} ; out value
 jmp ecount_IC_{1}

cont3_IC_{1}:
 lda stepPos_{1},x ; test if there is no repeat
 beq exit2_IC_{1}

 ldy allowRepeat_{1},x ; test if infinite repeat
 bne cont4_IC_{1}

econt2_IC_{1}:
 sta actIndex_{1},x ; store stepPos in actual position
 tay
 TBLR instrPtr{1} ; read values
 jmp start_IC_{1} ; and restart the core

43

cont4_IC_{1}:
 lda actNumRepeat_{1},x ; test if actual repeat is equal to max nun of repeat
 cmp allowRepeat_{1},x
 beq exit2_IC_{1}

 inc actNumRepeat_{1},x ; increment actual number of repeat
 lda stepPos_{1},x ; and use a new step position
 bne econt2_IC_{1}

exit2_IC_{1}:
 rts
 .endm

;===================================
; Out the value to shadow reg.
; according to the actual type of
; action (A=read value from table)
;===================================
 .mac OUTV
par SET {2}
 .if par=1 ; AD
 sta shadow_AD,x ; out value
 .endif
 .if par=2 ; SR
 sta shadow_SR,x ; out value
 .endif
 .if par=3 ; Wave
 beq .skip_CTRL ; skip if zero
 sta shadow_CTRL,x
.skip_CTRL:
 .endif
 .if par=4 ; Freq
 sty TEMP ; preserve y index reg
 jsr putFreq
 ldy TEMP
 .endif
 .if par=5 ; Pulse
 sty TEMP ; preserve y index reg
 jsr putPulse
 ldy TEMP
 .endif
 .if par=6 ; Filter Freq
 sty TEMP ; preserve y index reg
 jsr putFilterFreq
 ldy TEMP
 .endif
 .if par=7 ; Filter Resonance
 sty TEMP ; preserve y index reg
 jsr putFilterRes
 ldy TEMP
 .endif
 .if par=8 ; Filter Type
 sta shadow_TYPE,x ; out value
 .endif
 .endm

Play Command

Play Command routine is a conditional big test that, if command bits are set, will perform that
command.

;=================================
; Play the command of pattern
;=================================
pl_play_command:

;========
; Arpeggio
;========
 lda activeCommand,x
 and #$01 ; arpeggio command ?
 beq skip_com1

44

 lda posArpeggio,x ; put the right note according to position
 cmp #1
 bne skipPos1

 ldy note1Arpeggio,x ; use middle note
 jmp putFr

skipPos1:
 bcs skipPos0

 ldy actNote,x ; use main note
 jmp putFr

skipPos0:
 ldy note2Arpeggio,x ; use last note

putFr: ; put frequency
 lda frequencyLo,y
 sta shadow_FL,x

 lda frequencyHi,y
 sta shadow_FH,x

 dec speedArpeggio,x
 bpl skipInc

 lda speedRelArp,x ; reload speed
 sta speedArpeggio,x

 inc posArpeggio,x ; go to next position
 lda posArpeggio,x
 cmp #3 ; over the limit ?
 bne skipInc

 lda #0 ; yes, restore to thestart
 sta posArpeggio,x

skipInc:

;========
; Do portamento up
;========

skip_com1:
 lda activeCommand,x
 and #$02 ; portamento up command ?
 beq skip_com2

 ldy #PORT_MULT ; value is *PORT_MULT
loopSubPortUp:

 lda shadow_FL,x ; read pulse low
 clc
 adc freqPortUp,x ; add port. up value
 sta shadow_FL,x
 bcc skip_com2
 inc shadow_FH,x ; fix to high

 dey
 bne loopSubPortUp

;========
; Do portamento dn
;========

skip_com2:
 lda activeCommand,x
 and #$04 ; portamento dn command ?
 beq skip_com3

 ldy #PORT_MULT ; value is *PORT_MULT
loopSubPortDn:

 lda shadow_FL,x ; read pulse low
 sec
 sbc freqPortDn,x ; sub prot. dn value
 sta shadow_FL,x
 bcs skip_com3

45

 dec shadow_FH,x ; fix to high

 dey
 bne loopSubPortDn

;========
; tone-portamento
;========

skip_com3:
 lda activeCommand,x
 and #$08 ; tone-portamento command ?
 beq skip_com4

 lda toneDir,x ; read portamento direction
 bne negPort

 ldy #PORT_MULT ; value is *PORT_MULT
loopAddPort:
 lda shadow_FL,x ; read actual low freq.
 clc
 adc freqTonePort,x ; add the tone port freq. value
 sta shadow_FL,x
 bcc skipTPU
 inc shadow_FH,x ; fix high of frequency
skipTPU:
 dey
 bne loopAddPort

 lda shadow_FH,x ; test if high freq is reached
 cmp tone_FH,x
 beq testLUP ; is to test low ?
 bcc skip_com4
 bcs stopTone

testLUP:
 lda shadow_FL,x ; test if low freq is reached
 cmp tone_FL,x
 bcc skip_com4

stopTone:
 lda tone_FH,x ; copy final value to freq.
 sta shadow_FH,x
 lda tone_FL,x
 sta shadow_FL,x

 lda activeCommand,x ; stop tone portamento command
 and #$F7
 sta activeCommand,x
 jmp skip_com4

negPort:
 ldy #PORT_MULT ; value is *PORT_MULT
loopSubPort:
 lda shadow_FL,x ; read actual low freq.
 sec
 sbc freqTonePort,x ; sub the tone port freq. value
 sta shadow_FL,x
 bcs skipTPD
 dec shadow_FH,x ; fix high of frequency
skipTPD:
 dey
 bne loopSubPort

 lda shadow_FH,x ; test if high freq is reached
 cmp tone_FH,x
 beq testLDN ; is to test low ?
 bcs skip_com4
 bcc stopTone

testLDN:
 lda shadow_FL,x ; test if low freq is reached
 cmp tone_FL,x
 bcs skip_com4
 bcc stopTone

;========
; Do vibrato

46

;========

skip_com4:
 lda activeCommand,x
 and #$10 ; vibrato command ?
 beq skip_com5

 lda vibSpeed1,x ; test first speed value
 beq testSp2

 dec vibSpeed1,x ; decrement speed counter
 jmp goDir

testSp2:
 lda vibSpeed2,x ; test second speed value
 beq invDir

 dec vibSpeed2,x ; decrement speed counter
 jmp goDir

invDir:
 lda vibSpeed,x ; reload speed
 sta vibSpeed1,x
 sta vibSpeed2,x
 lda vibDir,x ; invert direction
 eor #$01
 sta vibDir,x

goDir:
 lda vibDir,x ; load vibrato direction
 bne invertDir

 lda shadow_FL,x ; read actual low freq.
 clc
 adc vibFreq,x ; add vibrato value
 sta shadow_FL,x
 bcc skipVU
 inc shadow_FH,x ; fix for high freq.
skipVU:

 jmp skip_com5

invertDir:
 lda shadow_FL,x ; read actual low freq.
 sec
 sbc vibFreq,x ; sub vibrato value
 sta shadow_FL,x
 bcs skipVD
 dec shadow_FH,x ; fix for high freq.
skipVD:

;========
; Do slide up
;========

skip_com5:
 lda activeCommand,x
 and #$20 ; slide up command ?
 beq skip_com6

 lda shadow_PL,x ; read pulse low
 clc
 adc slideUp,x ; add slide up value
 sta shadow_PL,x
 bcc skip_com6
 inc shadow_PH,x ; fix to high

;========
; Do slide down
;========

skip_com6:
 lda activeCommand,x
 and #$40 ; slide dn command ?
 beq skip_com7

 lda shadow_PL,x ; read pulse low
 sec

47

 sbc slideDn,x ; sub slide dn value
 sta shadow_PL,x
 bcs skip_com7
 dec shadow_PH,x ; fix to high

;========
; Do fade out
;========

skip_com7:

; do special command
 lda autoFadeOut,x ; read auto fade out
 beq oneShotCmd

 lda shadow_VOL ; check actual volume
 beq exitAFO

 dec actualFadeOut,x ; dec actual fade out counter
 bne oneShotCmd

 dec shadow_VOL ; decrement volume
 lda autoFadeOut,x ; read auto fade out
 sta actualFadeOut,x ; set actual fade out
 bne oneShotCmd

exitAFO:
 sta autoFadeOut,x ; clear auto fade out

; do one shot command
oneShotCmd:

;=======================
; AD command
;=======================

 lda actCommand2,x
 ;beq skip_3com1 ; exit if not more commands
 and #1 ; AD ?
 beq skip_2com1

 lda cmdADSR,x
 sta shadow_AD,x ; store AD

 lda actCommand2,x
 and #$F7
 sta actCommand2,x ; clear command flag

;=======================
; SR command
;=======================

skip_2com1:
 lda actCommand2,x
 and #2
 beq skip_2com2

 lda cmdADSR,x
 sta shadow_SR,x ; store SR
 lda #$00
 sta actCommand2,x ; clear command flag

;=======================
; Key on command
;=======================

skip_2com2:
 lda actCommand2,x
 and #4
 beq skip_2com3

 lda shadow_CTRL,x ; put key on
 ora #$01
 sta shadow_CTRL,x

;=======================
; Key off command
;=======================

48

skip_2com3:
 lda actCommand2,x
 and #8
 beq skip_2com4

 lda shadow_CTRL,x ; put key off
 and #$FE
 sta shadow_CTRL,x

;=======================
; Rest command
;=======================

skip_2com4:
 lda actCommand2,x
 and #$10
 beq skip_2com5

 lda #0 ; put frequency to zero
 sta shadow_FL,x
 sta shadow_FH,x

;========================
; Filter type command
;========================

skip_2com5:
 lda actCommand2,x
 and #$20
 beq skip_2com6

 lda cmdFilter,x ; put filter type
 sta shadow_TYPE

 lda #$00
 sta actCommand2,x ; clear command flag

;========================
; Filter resonance
;========================

skip_2com6:
 lda actCommand2,x
 and #$40
 beq skip_2com7

 lda cmdFilter,x ; put filter res.
 sta shadow_RES

 lda #$00
 sta actCommand2,x ; clear command flag

;========================
; Filter cut off
;========================

skip_2com7:
 lda actCommand2,x
 and #$80
 beq skip_3com1

 lda cmdFilter,x ; put filter cut
 sta shadow_FCH

 lda #$00
 sta actCommand2,x ; clear command flag

;=======================
; SR command
;=======================

skip_3com1:
 lda actCommand3,x
 and #1
 beq skip_3com2

 lda cmdADSR,x

49

 sta shadow_SR,x ; store SR

skip_3com2:
 rts

Play Hard-Restart

Play hard restart is the last block in diagram and is for making the hard restart of note if this
event is triggered.

;=================================
; play a HR if this is the case
;=================================
pl_play_hr:
 lda hrActive,x ; HR activated into this row?
 beq skipPlayer

 lda instr_HR,x ; read HR of instrument
 and #$0F
 sta TEMP ; isolate the ticks
 inc TEMP ; we check for minor of this

 ldy pattDelay,x ; read actual remaining delay ticks
 beq latest ; last ticks?
 cpy TEMP
 bpl exitPHR ; no time for HR

 lda hrActive,x
 bmi fullHR

 lda shadow_CTRL,x ; put gate off
 and #$FE
 sta shadow_CTRL,x
 rts

fullHR: ; activate the full HR
 lda instr_AD,x
 sta shadow_AD,x
 lda instr_SR,x
 sta shadow_SR,x
 lda instr_CTRL1,x
 sta shadow_CTRL,x
 rts

latest: ; latest cicle before new note
 lda instr_HR,x
 and #$80 ; HR?
 beq exitPHR ; no, gate off, so skip

 lda instr_CTRL2,x
 sta shadow_CTRL,x ; put control 2 to did

exitPHR:
 rts

Conclusion

Even if the actual code of JITT64 is changed as it has conditional compilation in it for removing
unused code of your tune, the structure is not changed, so you will have no difficult to look at the
JITT64 ver 1.03 source code.

As you have seen, the use of so freedom into instrument implementation have make the code to
manage it very complex, and so raster time usage can be high. However, due to the high use of
macro into the code, if I find some better way to make the same operation (maybe using undocu-
mented instructions), then I just need to modify a macro for having all the code ready for being
more quick in execution.

50

SIDin 13 end

51

