AST6/LST6
ASSEMBLER & LINKER
FOR THE ST6 FAMILY

User Guide

Release 1.0

May 1997

USE IN LIFE SUPPORT DEVICES OR SYSTEMS MUST BE EXPRESSLY AUTHORIZED.

STMicroelectronics PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUP-
PORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF STMicroelectronics. As used

herein:

1. Life support devices or systems are those which (a)
are intended for surgical implant into the body, or (b)
support or sustain life, and whose failure to perform,
when properly used in accordance with instructions for
use provided with the product, can be reasonably ex-
pected to result in significant injury to the user.

2. A critical component is any component of a life sup-
port device or system whose failure to perform can rea-
sonably be expected to cause the failure of the life
support device or system, or to affect its safety or effec-
tiveness.

Table of Contents

LINTRODUCTION . .. e e e e e e e e e e e e 7
1.1 Whatis assembler language? 7
1.2 Programming Strategiest e 8

1.2.1 Using ModularSource Files 8

1.2.2 Using Paged Program Spaceuiuuenuininnnnn. 8

1.2.3 Using aSingle Source File 9
1.3 Debugging Executablefiles 9
1.4 Loading Executable Files into ST6 Microcontrollers 9
1.5 ST6 Memory StruCturet s 10
1.6 Installing ASTE/LSTE i i e e e 11

2GLOSSARY OF TERMS i 12

3 AST6 AND LST6 SOURCE AND GENERATED FILES 16
3.1 Source Files 16

3.1l Labels ... 16
3.1.2 MNEMONICS . .ot e e 17
3.1.3 0perands e 17
3.1.3.1 NUumMbers . .. 17
3.1.3.2 String and Character Constants 18
3.1.3.3 Program Counter Reference 18
3.1.3.4 EXPresSiOnSt 18

3.1.4 COMMENTS .. ottt e e e e e e 19
3.2 Generated Files 20
3.2.1 Executable and Data Space Symbol Files 20
3.22 Listing Files 20
3.2.3 Including aMap Section 21
3.2.4 Linker Memory Maps e 22
3.2.5 Cross Reference Tables 23
3.2.6 Symbol Table Files 24
3.2.7 Error Reports 25

4 WORKING WITH THE PROGRAM SPACE 26
4.1 Paged Program Memory 26
4.2 Developing Programs for the Paged Area 27

4.2.1 Accessing Paged Program Spacec.ciuiiinin. 29

1574

3/86

Table of Contents

4.3 Using Absolute Objects 30
4.4 ROMMASKINGo 30
5 WORKING WITH THEDATA SPACE e 31
5.1 Example Data Space Definitions File 33
5.2 Paged Data Spaceo 35
.21 Writingto DataPages 35
5.2.2 Accessing Data Pagest 35
5.3 Usingthe Data ROMWIindow it 36
5.4 Accessing Data Within the Data ROM Window 37
5.4.1 Using <label>.Dand <label>W 37
5.5 Example Data ROM Window Application 39
6 IMPORTING AND EXPORTING LABELS 45
7 DEVELOPING MACROS e e e 47
7.1 Nesting MacCrosS ot e e 47
7.2 Macro Parameters e 48
7.3 Concatenating Symbols During Macro Expansion 49
8 USING CONDITIONAL ASSEMBLY e 50
9 APPLICATION DEVELOPMENT CHECKLIST i, 51
LTORUNNING ASTB . ..ottt e e e e e 52
10.1EXamMple . .o 53
10.2Warning Levels e 54
10.3AST6 Errors and Warnings it e 54
LI1RUNNING LST6 ..ottt e e e e e e e e 55
11.1Using Parameter Files 56
11 2EXamples . .. 56
11.3Errors and Warnings ottt i e 57
11.4Command Line Errors 57
11.5LST6 Error MESSAQESo vt i e i e e e 58
12 DIRECTIVES . .o e e e 59
4/86

4

Table of Contents

12.1Directive SUMMANYottt e e e e 59
12.2Directive DesCriptions 61
12.2.1ASCII, ASCIZ - Write Character String 61
12.2.2BLOCK - Reserve a Block of Memory 61
12.2.3BYTE - Generate Bytes of ObjectCode 61
12.2.4COMMENT - Set CommentTabs 62
12.2.5DEF - Define Data Space Location Characteristics 62
12.2.6DISPLAY -Display aStringt 63
12.2.7DP_ON - Enable Data Space pagingo.ouuuu... 63
12.2.8EJECT - Insert Listing Page Eject 64
12.2.9ELSE - Begin Alternative Assembled Code 64
12.2.10END - Define End of Source File 64
12.2.11ENDC - End Conditionally Assembled Code 65
12.2.12ENDM - End a Macro Definition 65
12.2.13EQU - Assign a Valuetothe Label 66
12.2.14ERROR - Generate ErrorMessagec.o.v.... 66
12.2.15EXTERN - Define Symbols as External 66
12.2.16 GLOBAL - Define Symbolsas Global 67
12.2.17IFC - Begin Conditionally Assembled Code 67
12.2.18INPUT - Read Source Statements fromFile 68
12.2.19LABEL.D - Access Data in Data ROM Window 68
12.2.20LABEL.P - Initialise Program ROM Page Register 69
12.2.21LABEL.W - Initialise Data ROM Window Register 70
12.2.22LINESIZE - Change Listing Characters Per Line 71
12.2.23LIST - Start/Stop Listing, 72
12.2.24MACRO - Begin Macro Definition 72
12.2.25MEXIT - End Macro Expansion, 73
12.2.26NOTRANSMIT - Don’t Transmit Data Space Symbols to LST6 .. 73
12.2.270RG - Set Program Origin i e 74
12.2.28PAGE_D - Specify Page Number for DEF 74
12.2.29PL - Change Listing Lines PerPage 75
12.2.30PP_ON - Enable Program Space paging 75
12.2.31ROMSIZE - Set ROM Size for ROM Masking 75
12.2.32SECTION - Begin Code Section, 76
12.2.33SET - Assign a Valuetothe Label 77
12.2.34TITLE - Set Listing Page Header Title 77
12.2.35TRANSMIT - Transmit Data Space Symbolsto LST6 77

g

5/86

6/86

Table of Contents

12.2.36VERS - Define Target ST6t i e 78
12.2.37W_ON - Enable Data ROM Windows 78
12.2.38WARNING - Generate WarningMessage 79
12.2.39WINDOW, WINDOWEND - Define Data Block in Program Space 79
12.2.40WORD - Generate Words of Object Code 80

4

AST6/LST6 - Introduction

1 INTRODUCTION

AST6 is a macro-assembler that translates files that are written in assembler lan-
guage into either executable files or object files. Executable files are files that are
loaded into ST6 microcontrollers and can then be executed. Object files are interme-
diate files that you link together, forming a single executable file, using the LST6 link-
er. Whether you use AST6 to create an executable file, or create object files using
AST6 then use LST6 to link them depends on your programming strategy, this is dis-
cussed later in this introduction.

AST6 and LST6 support the whole range of ST6 microcontrollers.

1.1 What is assembler language?

g

Assembler language is a symbolic code in which you develop applications. Symbolic
code is made up of mnemonics and operands. Mnemonics are commands that have
meaningful names, for example the ADD mnemonic adds two values together. Oper-
ands express complementary information to commands, such as addresses and val-
ues. You can also use meaningful names in operands. For example, a calendar ap-
plication could use the symbolic name DATE for the current date. Using symbolic
mnemonics and operands simplifies the application development process by letting
you use meaningful names in your application. Files containing symbolic code are
called source files.

Assembler programs are made up of the following elements:

e Machine instructions, or opcodes.
» Assembler Directives.
Machine instructions are codes that can be executed by the microcontroller without

translation. Refer to the Databook for a full description of the machine instructions
that are available for the ST6 microcontroller you are using.

Assembler directives control the assembly process. They can be used, for example,
to define macros, or specify where in the microcontroller's memory, executable code
and data are stored. The AST6 and LST6 directives are listed in “DIRECTIVES” on
page 59.

The source files in which you develop your application, and thus enter directives and
machine instructions, have the extension .ASM. You can write them using any ASCII
text editor.

7/86

AST6/LST6 - Introduction

1.2 Programming Strategies

Before you start developing an ST6 application, you must decide:

* Whether you want to develop your program in either modular source files or a sin-
gle source file.

» Whether or not you will use the paginated program space feature. This feature is
described “Paged Program Memory” on page 26.

The choice you make determines the process you perform to generate the final, exe-
cutable file.

1.2.1 Using Modular Source Files

Using modular source files means developing your program in a number of modules.
Each module is held in one source file. The advantages of developing your program
in modular source files are:

» Small programs are easier to debug, understand and maintain than large pro-
grams.

* You can test the output of a module in relation to the process it performs on the
inputs.

* You can reuse modules in other programs.

1.2.2 Using Paged Program Space

8/86

The decision as to whether you use the paged program space is simple: if the final ex-
ecutable file will require more than 4 Kbytes of memory when loaded into the ST6,
you must use the paged program space feature. Otherwise, you do not have to use
this feature.

If you develop your program in modular source files, or if you use the paged program
space feature, you must carry out the following steps in order to generate an execut-
able file:

1 Assemble each of the source files that make up the program individually, using
AST6. Assembled modular source files are called relocatable object files, and
have the extension .OBJ. The word relocatable is used because the exact location
that the generated object code will have in the ST6 memory is unknown. To gen-
erate these you must run AST6 with the -O option (see “Running AST6” on
page 52).

2 Link the assembled object files into a single, executable file, using LST6. Execut-
able files have the extension .HEX. The default file name generated by LST6 is
ST6.HEX. You can change this using the -O option when you run LST6.

4

AST6/LST6 - Introduction

1.2.3 Using a Single Source File

If you are developing a small program, that does not exceed 4 Kbytes, the advantag-
es of working with modular source files may not apply and you do not have to use the
paged program space feature. In this case, it is simpler to develop your application in
one module, since you can generate an executable file using AST6, without having to
go through the linkage phase using LST6. The file generated by AST6 from a single-
source file is called an absolute object, since you specify the exact location of the ex-
ecutable file in the ST6 memory using the .ORG directive (see “ORG - Set Program
Origin” on page 74).

1.3 Debugging Executable files

Once you have generated your executable files, you can test and debug them using
either the Windows-based ST6 program debugger, WGDB6, or the DOS-based ST6
program debugger, ST6NDB. Both debuggers simulate the behaviour of your pro-
gram when it is loaded into an ST6 microcontroller using either ST6 Simulator or the
ST6 HDS Emulator.

The ST6 Simulator is a program that simulates the execution of ST6 programs. It in-
cludes Wave Form Editor, that enables the simulation of ST6 pin input and output.

The ST6 HDS Emulator is a hardware system that enables real-time execution of ST6
applications.

Note that if you want to use either of the debuggers, you must generate .DSD and
.SYM files during the assembly and link phases. “AST6 and LST6 Source and Gen-
erated Files” on page 16 describes all the files that are involved in the assembly and
link processes.

1.4 Loading Executable Files into ST6 Microcontrollers

g

Once your program is ready, you can load it into ST6 microcontrollers using the
EPROM programmer.

9/86

AST6/LST6 - Introduction

The following diagram summarises the assembly and link processes.

Process Using One Source File Process Using Modular
Source Files

AST6 y
Assembler AST6 AST6 AST6
——) Assembler Assembler Assembler

xecutabl
File
HEX)

The letters in
parentheses indicatq
the option needed
to generate each

file type. ¥ ¥ ¥
ST6 WGDB6/ST6NDB ST6 Simulator
Microcontroller Debugger ST6 Emulator

1.5 ST6 Memory Structure

10/86

The ST6 memory is divided into two principal components, the program space and
the data space.

The program space is an area of ROM memory in which the instructions to be exe-
cuted, the data required for immediate addressing mode instructions, and the user-
defined vectors are stored. It is addressed using the 12-bit Program Counter register.
ST6 microcontrollers that have more than 4 Kbyte ROM feature a paginated program
space. In paginated ST6 program spaces, the area between real addresses 0 and
7FFh is paginated. The area between addresses 800h and FFFh on page 1 is static.

573

AST6/LST6 - Introduction

When referencing a page, the page is selected using the Program ROM Page Regis-
ter (PRPR).

If you use program space pagination, you must structure your application according-
ly, refer to “Working with the Program Space” on page 26 for further details.

Source code that is stored in the program space can be divided into sections. Sec-
tions are identified by a number, from 0 to 32. Each section starts at address O for the
current module. Sections enable you to write source code in any order, but specify
the order in which they are linked into the final assembled code. During the link edit
phase, sections are allocated to pages. By default, LST6 allocates sections to pages
by matching section numbers to page numbers, thus section 0 is allocated to page 0,
section 1 is allocated to page 1, and so on. The default size of a section is 2 Kbytes,
however you can modify this, as well as define which section is stored in each page,
using the -P option when you run LST6. You can allocate any number of sections,
from any source file, to a page in the program memory, provided their total size does
not exceed that of the page, which is 2 Kbytes.

The data space is an area of RAM memory that stores all the data required by the
program. It also stores the standard ST6 registers. ST6 microcontrollers that have
more than 64 byte RAM feature a paginated data space. In paginated ST6 data spac-
es, the area between addresses 0 and 3Fh is paginated into 64-byte RAM and EEP-
ROM pages. When referencing data in a paged area, the page is selected using the
Data RAM/EEPROM Bank Register (DRBR).

To provide you with additional data space, ST62 and ST63 family chips let you store
read-only data, such as look up tables and constants in the program space. The area
of program space used for storing data space information is called a Data ROM Win-
dow.

1.6 Installing AST6/LST6

g

To install the AST6/LST6 software, put the diskette marked ST6-SOFTWARE
TOOLS into your floppy drive and copy its contents to your hard disk.

11/86

ASTG6/LST6 - Glossary of Terms

2 GLOSSARY OF TERMS

12/86

absolute object file . An object file whose location in memory is defined in the source
code using the .ORG directive. Absolute objects are can only be generated from pro-
grams that are coded in one source file.

addressing mode . In order to decrease the size of instructions, and thus the space
they take in the program memory and the time needed to execute them, instructions
have different addressing modes, based on the minimum addressing informationre-
guired for each instruction.

assembler language . A symbolic code in which you develop applications, and that is
translated into object or executable files using an assembler.

AST6. The ST6 family macro-assembler that translates files that are written in as-
sembler language into either executable files or object files.

conditional assembly . The use of conditions in source files, according to which the
subsequent lines of code are or are not assembled. Conditional assembly can be
used to generate different program versions or executable files for different ST6 mi-
crocontrollers from the same source file.

cross reference table file (.X) . A file that lists the symbols used in a program, and
specifies the numbers of the lines that define or reference each symbol.

Data RAM/EEPROM Bank registerr (DRBR) . A register that selects the data page
to be accessed by the subsequent instruction(s).

Data ROM Window . An area in the data space through which you can access read-
only data, such as look up tables and constants, that is stored in blocks of up to 64
Kbytes in the program space.

Data ROM Window Register (DRWR) . A register that, together with an instruction
address, specifies the block of data in the program space to be accessed via the Data
ROM Window.

data space . An area of RAM memory that stores all the data required by the pro-
gram. and the standard ST6 registers.

data space symbolfile (.dsd) . Files that list the symbols in the data space. They are
required by the ST6 debuggers.

directives . Commands that control the assembly process. They can be used, for ex-
ample, to define macros, or specify where in the microcontroller's memory, executa-
ble code and data are stored.

4

AST6/LST6 - Glossary of Terms

g

dynamic pages . Virtual pages in the paged area of the program space. They are rep-
etitions of the same area of ROM whose real address is 0 to 7FFh. Each dynamic
page has a virtual address to distinguish it from the others.

emulator . A hardware device that simulates ST6 microcontrollers, enabling real-time
execution of ST6 applications.

entry point . The address from which an executable file is written to ROM.

error report file (.err) . Afile to which error and warning messages that are generated
during assembly and linkage are optionally written.

executable file (.hex) . A file that is ready to be loaded to a microcontroller and exe-
cuted. ST6 executable file are in the Inter-HEX format.

expression . A constant or symbol, or any combination of the two, separated by an
arithmetic operator.

external label . Labels that are external to a module are those that are defined in an-
other module.

global symbol . Symbols that are defined in one source module, but that can be used
by others.

label . A meaningful name that you can use to specify a memory location or symbol.

linker memory map file (map) . Linker memory map files list the start, end and size
of all the sections in the application and the start locations and sizes of the relocatable
objects.

listing file (.lis) . An ASCII text file that shows the lines of generated object code to-
gether with the source code they were generated from.

LST6. The ST6 family linker, that links relocatable objects (assembled source file
modules) into a single, executable file that can be loaded into the ST6 memory.

machine instructions . Codes that can be executed by the microcontroller without
translation. Machine instructions are also called opcodes.

macro . A sequence of assembler instructions and directives that can be inserted into
the source program in place of the macro name. Macros enable you to simplify code
and reduce code development time by reusing frequently-used functions.

macro-assembler . An assembler that includes macro generation capabilities.

map section . A section that can be included at the end of a listing file of an absolute
object, that lists the name, type and size of each section.

13/86

ASTG6/LST6 - Glossary of Terms

14/86

mnemonic . An instruction, that is converted into machine code by the assembler.
Mnemonics have meaningful names, for example the ADD mnemonic adds two val-
ues together.

object file (.obj) . An intermediate file that you link together, forming a single execut-
able file, using the LST6 linker (relocatable object).

opcode . See Machine Instructions.

operand . The part of an instruction line that specifies complementary information for
the instruction, such as contents and symbols. Operands may contain:

* Numbers

e String and character constants
* Program Counter References
* Expressions

paging . A feature in which an area of both the data space and the program space is
duplicated into ‘pages’. Pages are not physical areas of memory, they are repetitions
of the same area that are distinguished using virtual addresses. Paging is a way of in-
creasing the size of the data and program spaces to beyond that of their addressable
area.

Program counter . A 12-bit register that points to the address of the instruction cur-
rently being executed in the program space.

Program ROM Page Register (PRPR) . A register that indicates the program space
page to be accessed.

program space . The area of ROM memory in an ST6 microcontroller in which pro-
grams are stored.

relocatable object . The separately-assembled source files that make up a program.
The word relocatable is used because the exact location that the generated object
code will have in the ST6 memory is unknown.

ROM Masking . A process that involves manually filling all reserved and unused are-
as of ROM with a predefined value. ROM masking is recommended, since itimproves
the reliability of your program when it is executed in the microcontroller.

sections . Divisions of code enabling you to write source code in any order, but spec-
ify the order in which they are linked into the final assembled code. During the link edit
phase, sections are allocated to pages. By default, LST6 allocates sections to pages
by matching section numbers to page numbers, thus section 0 is allocated to page 0,
section 1 is allocated to page 1, and so on.

4

AST6/LST6 - Glossary of Terms

4

source file (.asm) . ASCII text file, in which you write program code. Source files are
made up of lines, each of which is terminated by a new line characters. Each line may
contain Labels, Mnemonics, Operands and Comments.

static area . The real addressable area of ROM. It includes two static pages:

» Page 1, which is the second page within the overlaid area.

» Page 32, which located in the area between addresses OFFOh and OFFFh, and is
thus not in the paginated area.

symbol table file (.sym) . A file that lists the value and type of each symbol in an as-
sembled program. They are required by emulators.

15/86

AST6/LST6 - AST6 and LST6 Source and Generated Files

3 AST6 AND LST6 SOURCE AND GENERATED FILES

This section describes the format of source files that AST6 can assemble, and the
output files that AST6 and LST6 generate either automatically or when an option is
selected.

3.1 Source Files

AST6 source files have the extension .asm. .asm files are made up of lines, each of
which is terminated by a new line characters.

Source files have the following format:

DCO .set 0 ;initialise data space location counter

.macro rmb symb

symb .def DCO
DCO .setDCO+1
-endm Comments
rmbvarl
[l [| l
' Operands
Mnemonics
Labels

Each line may contain up to four types of information:

e Labels, which let you specify a memory location or symbol using a meaningful
name.

¢ Mnemonics, which are instructions that are converted into machine code.

* Operands, which specify complementary information for an instruction, such as
contents and symbols.

e Comments

These types of information must be entered in the above order. Each type of informa-
tion must be separated by one or more spaces. The total width of a line can not ex-
ceed 400 characters. The following paragraphs describe these types of information.

3.1.1 Labels

Labels let you specify a memory location or symbol using a meaningful name. When
a label is defined, it takes the current value of the address counter.

Labels must start in column one. A label may contain up to eight of any of the follow-
ing characters:

16/86 <73

AST6/LST6 - AST6 and LST6 Source and Generated Files

» Upper case letters (A - Z)
* Lower case letters (a - z)
* Digits (0-9)

« Dollar sign ($)

* Underscore ()

The first character of a label must be a letter or an underscore. Labels are case sen-
sitive.

3.1.2 Mnemonics

Mnemonics must be separated from the preceding label (if there is one) by a space or
a tab. Mnemonics specify the action to be performed by the assembler. Mnemonics
can be the name of a machine instruction, an assembler directive code or a macro
call. If a mnemonic is omitted from a line, the program counter is assigned to the label
(if present).

3.1.3 Operands

Operands must be separated from mnemonics by one or more spaces. If more than
one operand is used, the operands must be separated by commas. Operands may in-
clude:

* Numbers

e String and character constants
* Program Counter References
* Expressions

The following paragraphs describe these.

3.1.3.1 Numbers

g

The default radix for numbers is decimal. You can use numbers in other formats by
following the number with the appropriate letter:

This letter: Indicates this radix:
b orB Binary

oorO Octal

h orH Hexadecimal

In hexadecimal, the decimal digits 10 - 15 are represented by upper or lowercase let-
ters from A to F. Hexadecimal numbers that start with a letter must be preceded by
the number 0. All numbers are defined as 16-bit signed values.

For example, the decimal value 45 is represented by 01000101b in binary, 550 in oc-
tal, and 2dh in hexadecimal.

17/86

AST6/LST6 - AST6 and LST6 Source and Generated Files

3.1.3.2 String and Character Constants

String constants are strings of ASCII characters enclosed by double quotes. For ex-
ample: “This is an ASCII string”. Character constants are single ASCII character en-
closed by single quotes. For example ‘T’ .

3.1.3.3 Program Counter Reference

You can use the $ sign to identify the current value of the program counter (PC) in
program space operands.

3.1.3.4 Expressions

18/86

Expressions in operands may contain numbers, labels or PC-relative references,
separated by operators. Expressions are evaluated from left to right during assembly.
Operators are evaluated according to their precedence, meaning that some opera-
tors are evaluated before others. Expressions within parentheses are evaluated first.

It is recommend that you use expressions containing program space symbols in jp/
call instructions and variants of PC-relative instructions, such as jrr and jrs.

For example:
Idi value, constl

call subroutinel

subroutinel Id A, value
jrz out
dec A
jp subroutinel
out ret
Such expressions are restricted to the following syntax:
expression = symbol
expression = symbol+constant_expression
expression = symbol-constant_expression

where constant_expression contains absolute references only.

4

AST6/LST6 - AST6 and LST6 Source and Generated Files

The following table lists the available operators and their precedence.

Operator Priority (the
. lowest value

on Meaning has highest Example
operand priority)
+ unary plus 1 +137
- negation 1 -137

(2's complement)
~ Bit inversion 1 ~00111111 = 1100000

(L's complement)
* multiplication 2 38*3 =114
/ division 2 114/3 = 38
% modulo 2 38h%3 =2
>>n right shift* 2
<<n left shift* 2
+ addition 3 038h+0FFh = 37h
- subtraction 3 OFFh-038h = 0C7h

bitwise and 4 00001111&11111111 = 00001111
A bitwise exclusive or 5 000011117111212111 =11110000
I bitwise inclusive or 6 01001001100010010 = 01011011

*Right shift and left shift shift the contents of the operand n places to the right or left
respectively. For example:

sav_a

3.1.4 Comments

.def 08h

Idi sav_a, OFFh
Idi A, sav_a >> 2

Idi A, sav_a << 2

: A=02h
; A=20h

Comments are preceded by a semicolon. AST6 ignores all characters that follow a
semicolon. Note that you can use semicolons in string and character constants.

g

19/86

AST6/LST6 - AST6 and LST6 Source and Generated Files

3.2 Generated Files

This section describes the files that are generated by AST6 and LST6.

3.2.1 Executable and Data Space Symbol Files

Executable (HEX) and data space symbol (DSD) files are automatically generated by
AST6 if you run it without the -O option, or by LST6 if you use relocatable objects.

HEX files are in the INTEL-HEX format.

Below is an example line of a HEX file:

:0208A000D44D35
l l 1 1 1

|
L Checksum
Second byte of data
First byte of data

Line type:
00 = data
01 = last line

First address of the line
Number of bytes in the line

Start of line indicator

The checksum is calculated by starting at 0, then subtracting each byte from the pre-
vious result. Thus the total - the checksum = 0. For example:

00-02-08-A0-00-D4-4D-35=00
DSD files listthe symbols in the data space. They are required by the ST6 debuggers.

3.2.2 Listing Files

20/86

Listing files show the lines of generated object code together with the source code
they were generated from. To output a listing file, run AST6 with the -L option.

If you generate relocatable objects, you can update the listing files during the linking
process by running LST6 with the -1 option. Listing files are named <prog>.lis , where
<prog> is the name of the assembled file.

Examples
To generate a listing file for absolute objects (single-source file programs):
AST6 -L myprog Generates the files myprog.lis, myprog.hex and myprog.dsd.

To generate a listing file for relocatable objects (modular file programs or programs
that use program space paging):

AST6 -L -O myprogl Generates the files myprogl.lis and myprogl.obj.

4

AST6/LST6 - AST6 and LST6 Source and Generated Files

AST6 -L -O myprog2
Then:

LST6 -1 -O myprog
myprog2.lis, and gener

Generates the files myprog2.lis and myprog?2.obj.

myprogl myprog2
ates myprog.hex and myprog.dsd.

Updates the files myprogl.lis and

The following diagram shows an example AST6 listing file and describes what the

various columns mean.

22 POO 0000 5F10 SO0 0000 22 add a,varl

23 23 .section1

24 PO1 0800 BF20 SO1 0000 24 and a,var2

25 P01 0802 DF30 SO1 0002 25 sub a,var3

26 26

27 27 .section2

28 P02 1000 3F40 SO02 0000 28 cp a,var4

29 P02 1002 0D1000 SO02 0002 29 clr varl

30 30

31 31 mac_ exl varl

| I | | l | Ll L |
I— Source line

3.2.3 Including a Map Section

g

Source line number

Relative section
address

Current section

Binary code
Absolute section
address

Current page type
and number

Listing line number

If you are using absolute objects (single-source file programs), you can include a map
section at the end of listing files. If you are using relocatable objects, you can gener-
ate a separate map file using LST6 (see “Linker Memory Maps” on page 22).

21/86

AST6/LST6 - AST6 and LST6 Source and Generated Files

The following diagram shows an example map section:

» SPACE ‘PAGE_0' SECTION MAP **

| name | type | size |

| PGO_O | TEXT | 182 |

| | I I

Tue May 06 10:54:52 1997 file dummys.lis page 19
** SPACE ‘PAGE_1'" SECTION MAP **

| name | type | size |

| PG1. 0 | TEXT | 158 |

| | I I

Tue May 06 10:54:52 1997 file dummys.lis page 20
** SPACE ‘PAGE_32'" SECTION MAP **

| name | type | size |

| PG32_0 | TEXT | 10 |
| | I I

The type column indicates the section type, this can be text for program space
section or data for data space section.

To generate mapping information, run AST6 with the -M option as well as the -L op-
tion. For example:

AST6 -L -M myprog Generates the files myprog.lis, myprog.hex and myprog.dsd.

3.2.4 Linker Memory Maps

22/86

If you are using relocatable objects (modular file programs or programs that use pro-
gram space paging), you can generate separate linker memory map files. Linker
memory map files list the start, end and size of all the sections in the application and
the start locations and sizes of the relocatable objects. Link process errors and warn-
ings are also reported in linker memory maps.

573

AST6/LST6 - AST6 and LST6 Source and Generated Files

Below is an example line of a linker memory map:

*** ST6 Linkage Editor: ‘dummys’ object file Map ***
PROGRAM SECTIONS:

number start end size

0 0000 07FF 0182

1 0800 OF9F 014F

32 OFFO OFFF 0010
WINDOW SECTIONS:

number start end size

0 0182 018A 0009
MODULE dummys.obj:

section type start size

0 P 0000 0182
1 P 0800 014F
32 P OFFO 0010
0 W 0182 0009

The type column inlinker memory maps indicates the section type, this can be P for
program space section or Wfor Data ROM Window section.

To generate a linker memory map, run LST6 with the -M option. The mapping file is
named ST6.MAP by default. You can specify your own name by including the -O op-
tion when running LST6. In this case the file is named <prog>.MAP, where <prog> is
the name of the assembled file. For example, the command:

LST6 -M -O myprog myprogl myprog2

generates the files myprog.map, myprog.hex and myprog.dsd.

3.2.5 Cross Reference Tables

g

If you are using absolute objects (single-source file programs), you can generate
cross-reference tables. These list, for each symbol, the numbers of the lines that de-
fine or reference that symbol. The line number that defines the symbol is followed by
an asterisk (*). To generate a cross-reference table, run AST6 with the -X option.

23/86

AST6/LST6 - AST6 and LST6 Source and Generated Files

Cross reference tables are named <prog>.X, where <prog> is the name of the as-
sembled file. For example, the command:

AST6 -X myprog

Generates the file myprog.X

3.2.6 Symbol Table Files

Symbol table files list the value and type of each symbol in the assembled code. You
must generate a symbol table file if you want to test your program using an emulator.
Below is an example line of a symbol table file:

porta : EQU 00fféh P
| I | L]

L]

I— Symbol Type
P = program space symbol
C = constant

Full 16-bit symbol address

Symbol name

If you are using absolute objects (single-source file programs), to generate a symbol
table file, run AST6 with the -S option. AST6 symbol table files are named
<prog>.sym, where <prog> is the name of the assembled file. For example, the com-
mand:

AST6 myprog -S
Generates the file myprog.sym

If you are usingrelocatable objects (modular file programs or programs that use pro-
gram space paging), to generate a symbol table file, run LST6 with the -S option. The
symbol table file is named ST6.SYM by default. You can specify your own name by
including the -O option when running LST6. In this case the file is named
<prog>.SYM, where <prog> is the name of the assembled file. For example, the com-
mand:

LST6 -S -O myprog myprogl myprog2
generates the files myprog.map, myprog.hex and myprog.dsd.

If you run AST6 with the -O option (to generate a relocatable object), symbol table file generation
is disabled, since in this case the program space symbols are defined in the link edit process.

3.2.7 Error Reports

24/86

By default, AST6 error and warning messages are displayed on your screen, and
written to the listing file if you run AST6 with the -L option. You can choose to record
error and warning messages in an error file, by running AST6 with the -E option. Error

573

AST6/LST6 - AST6 and LST6 Source and Generated Files

g

files are named <prog>.err, where <prog> is the name of the assembled file. For ex-
ample, the command:

AST6 -E myprog
Generates the file myprog.err

LST6 writes errors to the file stdout .

25/86

AST6/LST6 - Working with the Program Space

4 WORKING WITH THE PROGRAM SPACE

The program space is an area of ROM memory in which the instructions to be exe-
cuted, the data required for immediate addressing mode instructions, and the user-
defined vectors are stored. It is addressed using the 12-bit Program Counter register.
The following diagram shows the ST6 program space structure.

|
0000h T
Paged
ROM Area
07FFh [|
0800h
ROM
OFFOh
Interrupt and
OFFFh | Reset Vectors|

4.1 Paged Program Memory

26/86

ST6 microcontrollers that have more than 4 Kbytes of ROM feature a paginated pro-
gram space.

This means that the ROM consists of a static area and up to 30 dynamic pages. Dy-
namic pages are virtual, they are repetitions of the same area of ROM whose real ad-
dress is 0 to 7FFh. Each dynamic page has a virtual address to distinguish it from the
others. Virtual address are allocated in relation to the page number, as shown in the
table below.

The static area is the real addressable area of ROM. It includes two static pages:

e Page 1, which is the second page within the overlaid area.

e Page 32, which located in the area between addresses OFFOh and OFFFh, and is
thus not in the overlaid area. Page 32 stores the interrupt and reset vectors.

It is better to think of pages 1 and 32 as areas of static ROM, although they are ad-
dressed as if they were pages.

573

AST6/LST6 - Working with the Program Space

To reference a page, the required page is selected using the Program ROM Page
Register (PRPR).

You can perform jumps from the static area to any of the dynamic pages. You cannot,
however jump directly from one dynamic page to another without first jumping to the
static area. The following table shows the paged memory characteristics:

Page No. Virtual Address RReal Address Can jump to
0 0000 to O7FF 0000 to O7FF Page 1
1 0800 to OFEF 0800 to OFEF All pages
2 1000 to 17FF 0000 to O7FF Page 1
3 1800 to 1FFF 0000 to O7FF Page 1
n=4to 31 [n*800]-[(9n*80)+7FF] | 0000 to O7FF Page 1
32 OFFO to OFFF OFFO to OFFF All pages

The use of pages 0 and 2 to 31 are optional.

4.2 Developing Programs for the Paged Area

g

Source code that uses paged memory must be divided into sections. Each section is
a block of code that can be allocated to a page during the link phase. Each section
starts at address O for the current module. Developing programs in sections has the
advantage that sections enable you to write source code in any order, but specify the
order in which they are linked into the final assembled code. You can allocate any
number of sections, from any source file, to a page in the program memory, provided
their total size does not exceed that of the page, which is 2 Kbytes.

By default, LST6 allocates sections to pages by matching section numbers to page
numbers, thus section O is allocated to page 0, section 1 is allocated to page 1, and
so on. If you define more than once section with the same number, the sections are
mapped to their appropriate pages contiguously, in the order in which their holding
modules are listed when AST6 is executed.

The default size of a section is 2 Kbytes, however you can modify this, as well as de-
fine which section is stored in which page, using the -P option when you run LST6.

Allocating sections to pages using the -P option can be useful in two cases:

* For locating parts of the program, such as interrupt vectors, during the debugging
phase.

* For limiting the memory space taken by final executable code and ensuring it is
not written to any reserved areas of memory.

27186

AST6/LST6 - Working with the Program Space

The -P option has the following format: -P<n>:<start>-<end>, where <n> is the sec-
tion number, <start> is the start address and <end> is the end address. For example,
to map section 1 to the area 400h to 7FFh you enter P1:400-7FF when you execute
LST6.

You divide the module into sections using the .SECTION directive. The following dia-
gram shows how LST6 allocates sections to pages when the -P option is not used:

These modules:

moduleO modulel module2
Section 0 Section 3 Section 0
Block of Block of Block of
code A code D code G
Section 4 Section 0 Section 4
Block of Block of Block of
code B code E code H
Section 2 Section 2
Block of Block of
code C code |
Assembled as follows:
AST6 module0
AST6 modulel
AST6 module2
Are mapped as follows:
Page 0O Page 1 Page 2 Page 3 Page 4
Block of Block of Block of Block of
code A code C code D code B
Block of Block of Block of
code E code | code H
Block of
code G

You must assemble source files that use paged memory as relocatable objects, by
executing AST6 with the -O option (see “Running AST6” on page 52).

Note: To be able to use this feature, you must include the PP_ON directive in your
code before assembling it.

28/86 <73

AST6/LST6 - Working with the Program Space

4.2.1 Accessing Paged Program Space

The Program ROM Page Register (PRPR) selects the page to be accessed. To sim-
plify the use of the PRPR, you can use the <label>.P notation to load the location of
the specified label to the PRPR. Thus, when jumping from one dynamic page to an-
other, a jump is first made to page 1, where the <label>.P notation is used to load the
target page. The jump is then made to the target. The following example shows how
to program a jump from section 4 to section 5 (that are mapped to different pages dur-
ing link editing):

.pp_on
PRPR .def Ocah ; define PRPR
.section 4
jp prsl Jump to PRPR setter in page 1
caller nop
.section 1
prsl Idi PRPR target.p ;set the page holding the label
"target” in PRPR
jp target ;jump to the label "target”
return jp caller ; return to calling section
.section 5
target nop ;Start the process
jp return ;return to page 1

4.3 Using Absolute Objects

g

You can generate absolute objects if your program is made up of one module only
and you are not using a paged program memory. To assemble an absolute object,
you must execute AST6 without the -O option (see “Running AST6” on page 52).

When developing absolute object applications, you use the .ORG directive to specify
the location of object code in the ST6 memory (see “ORG - Set Program Origin” on
page 74). .ORG specifies the starting address or the subsequent code.

29/86

AST6/LST6 - Working with the Program Space

4.4 ROM Masking

30/86

ROM masking means manually filling all reserved and unused areas of ROM with a
predefined value. ROM masking is recommended, since it improves the reliability of
your program when it is executed in the microcontroller. To implement ROM masking,
you must execute LST6, or AST6 if LST6 is not being used, with the -D option. By de-
fault, reserved and unused areas are filled with the value FFh. You can change this
by specifying the value you want to use after the -D option (see the examples below).
To enable AST6 or LST6 to perform ROM masking, you must provide the following in-
formation:

» The target ST6 type, by including the .VERS directive in your source file. See
“VERS - Define Target ST6” on page 78.

» The size of the ROM in the target ST6, by including the .ROMSIZE directive in
your source file. See “ROMSIZE - Set ROM Size for ROM Masking” on page 75.

Examples

The following command fills reserved and unused areas with the value 04h (the NOP
instruction):

ast6 -d04 myprog

The following commands fill reserved and unused areas with the value FFh:
asté -O myprog
Ist6 -d myprog

The following commands generate the file myprog.hex from myprogl.obj and
myprog2.obj, and fill reserved and unused areas with the value 04h:

asté -O myprogl
asté -O myprog2
Ist6 -d04 -O myprog myprogl myprog2

4

AST6/LST6 - Working with The Data Space

5 WORKING WITH THE DATA SPACE

g

The data space is an area of RAM memory that stores all the data required by the
program. It also stores the accumulator, indirect registers, short direct registers 1/O
port registers, the peripheral data and control registers, the Data ROM Window reg-
ister and the Data ROM Window (see the Databook for the ST6 microprocessor you
are using for further details of its memory configuration). The following diagram
shows the structure of the data space:

000h I
RAM/EEPROM
Paged Area
03Fh B
040 | pata ROM
070h Window

080h | X Register
081h | Y Register
082h | V Register
083h | W Register

084h
0COh

RAM

DRWR
PRPR

DRBR

OFEh Accumulator

You must define the characteristics of each byte that you want to use in the data
space using the .DEF directive (see “DEF - Define Data Space Location Characteris-
tics” on page 62). This includes the standard registers listed above. .DEF enables
you to associate a label with an address and define the following characteristics:

* Read and write access.

* lts value.

» whether it is referenced in the .DSD file, which is referenced by the ST6 hardware
emulator.

Therefore, all data space definition sections will always include the following lines de-
fining the accumulator (A) and the Index registers (X, Y, V and W):

a .def Offh, Offh, Offh
X .def 80h, Offh, Offh

31/86

AST6/LST6 - Working with The Data Space

32/86

y .def 81h, Offh, Offh
w .def 82h, Offh, Offh
Vv .def 83h, Offh, Offh

You cannot export data space symbol definitions, and thus share them with all the
source modules that make up a program, using the .GLOBAL directive. You should
therefore place all .DEF definitions in a separate file, that is included at the beginning
of each source module using the .INPUT directive (see “INPUT - Read Source State-
ments from File” on page 68). An example of such a file is given in “Example Data
Space Definitions File” on page 33.

Note that such multiple definition will cause a problem during the link edit phase:
LST6 will find as many definitions of the same addresses as there are modules, and
thus generate the appropriate error message. This problem can be overcome by pre-
venting the multiple transmission of the definitions to LST6 using the .NOTRANSMIT
and .TRANSMIT directives (see “TRANSMIT - Transmit Data Space Symbols to
LST6” on page 77). You must, however allow the transmission of the definitions file
for one module, so that its details are stored in the .DSD file.

The following example shows how to include a file named defs.h in the beginning of
the source modules that make up an application:

:module 1
JINPUT "defs.h”
:module 2
.NOTRANSMIT
INPUT "defs.h”
.TRANSMIT
:defs.h
.pp_on
a .def ffh

An alternative approach is to create a macro for defining data space definitions. For
example:

DCO .set O ;initialise data space location
;counter

4

AST6/LST6 - Working with The Data Space

5.1 Example Data Space Definitions File

g

.macro rmb symb

symb .def DCO
DCO .set DCO+1
.endm
rmb varl
rmb var2

The following example data definitions file defines the data space for an ST626x mi-

crocontroller.

Kk kkkk kkkhkkk kkkkhkkkkk kkkkhkkkkkkkhkkkx

; * REGISTER/VARIABLE DECLARATION*

.def 080h, 0ffh,0ffh,m
.def 081h,0ffh,0ffh,m
.def 082h,0ffh,0ffh,m

» = < < X

.def Offh,0ffh,0ffh,m
IOR .def 0c8h,0ffh,0ffh
DRWR .def 0c9h,0ffh,0ffh

kkkkkkkkkkkkkk

; * PORT A *

DRA .def 0cOh,0ffh,0ffh
DDRA .def 0c4h,0ffh,0ffh

OPRA .def Occh,0ffh,0ffh

Kkkkkkkkkkkkkk

; * PORT B *

DRB .def 0clh,0ffh,0ffh
DDRB .def 0c5h,0ffh,0ffh
OPRB .def Ocdh,0ffh,0ffh

. *kkkkkkkkkkkkk
’
* PORT C *

*kkkkkkkkkkkkk

.def 083h,0ffh,0ffh,m

kkkkkhk kkkhhkk khkk kkkhhk khkk khkhk drkkhhxx

; Interrupt Option Register
; DATA ROM Window Register

; Data Register A

Data Direction Register A
Option register A

Data Register B

; Data Direction Register B

Option register B

33/86

AST6/LST6 - Working with The Data Space

34/86

DRC .def 0c2h,0ffh,0ffh
DDRC .def 0c6h,0ffh,0ffh
OPRC .def Oceh,0ffh,0ffh

kkkkkkkkkkkkkk
1

; * A/ID CONVER *
ADCR .def 0d1h,0ffh,0ffh
ADR .def 0dOh,0ffh,0ffh
; * TIMER *

kkkkkkkkkkkkkk
1

;TSCR1def 0d4h,0ffh,0Offh
;TCR1 .def 0d3h,0ffh,0ffh
;PSC1 .def 0d2h,0ffh,0ffh

. kkkkkkkkkk hkkk khkkkxkkx
’

; Data Register C
; Data Direction Register C

; Option register C

; Control register

; DATA register (result of conversion)

; TIMER STATUS control register
; TIMER COUNTER register
; TIMER PRESCALER register

; * AUTO RELOAD TIMER *

kkkkkkkkkkkkkkkkkkkkk
1

ARMC .def 0d5h,0ffh,0ffh
ARSCO .def 0d6h,0ffh,0ffh
ARSC1 .def 0d7h,0ffh,0ffh
ARLR .def 0d8h,0ffh,0ffh
ARRC .def 0d9h,0ffh,0ffh
ARCP .def Odah,0ffh,0ffh

WDR .def 0d8h

psc .def 0d2h,m

ter .def 0d3h,m
tscr .def 0d4h,m

tmz .equ 7
eti .equ 6
tout .equ 5
dout .equ 4
psi .equ 3

; AR MODE control register

; AR STATUS control register 0
; AR STATUS control register 1
; AR LOAD register

; AR RELOAD/CAPTURE register
; AR COMPARE register

;watchdog register

4

AST6/LST6 - Working with The Data Space

5.2 Paged Data Space

ST6 microcontrollers that have more than 64 bytes of RAM feature an optional paged
data space. Thus, if your application requires more than 64 bytes of RAM, you can
implement data space paging. In paged ST6 data spaces, the area between address-
es 0 and 3Fh is paged into 64-byte RAM and EEPROM pages. When referencing a
page, the required page is selected using the Data RAM/EEPROM Bank Register
(DRBR).

To implement data space paging you must include the directive .DP_ON (see
“DP_ON - Enable Data Space paging” on page 6312.2.7) in your source module.

5.2.1 Writing to Data Pages

The .PAGE_D directive defines the page to which subsequent data is written (see
“PAGE_D - Specify Page Number for .DEF” on page 74). The data following a
.PAGE_D directive is written to the page number specified by the directive. For exam-
ple:

.DP_ON
PAGE D 0

vl .def 0

v2 def 1
PAGE_D 1

count .def 0

colour .def 1

yron

5.2.2 Accessing Data Pages

g

The page of data to be accessed is defined using the Data RAM/EEPROM Bank Reg-
ister (DRBR). To avoid having to set DRBR each time you want to reference a data
page, you can use the <label>.P notation, that sets DRBR to the data page holding
the specified label.

The DRBR register selects the data page to be accessed according to the bit number
(0 to 7) that holds a 1. The DRBR is implemented in different ways, depending on the
ST6 you are using (see the Databook for the ST6 microprocessor you are using for
further details).

The following example shows the use of <label>.p in selecting the data space page to
be accessed.

35/86

AST6/LST6 - Working with The Data Space

.DP_ON
RAMSW .def 0e8h
a .def Offh

.PAGE_D 2
XX .def O
yy def 1

PAGE_D 1

Idi RAMSW,xx.p ;select data page
containing xx

Id a,xx

5.3 Using the Data ROM Window

36/86

To provide you with additional data space, ST62 and ST63 family microprocessors let
you store read-only data, such as look up tables and constants, in areas of up to 64
bytes in the program space. Although it is physically located in the program space,
the address of this area is 40h to 7Fh in the data space. This area is called the Data
ROM Window.

To implement the Data ROM Window, you must include the .W_ON directive in the
beginning of your source files. You can allocate any number of blocks of data to a
continuous area of up to 64 bytes in the ROM. You can create as many 64-Kbyte
blocks of data as you like within the ROM.

If you are generating relocatable object code, blocks of data to be stored in the Data
ROM Window can be delimited using the .WINDOW and .WINDOWEND directives
(see “WINDOW, WINDOWEND - Define Data Block in Program Space” on page 79).
In this case, LST6 automatically defines the defined blocks of data as accessible via
the Data ROM Window, in the order in which the modules are listed when LST6 is ex-
ecuted. It allocates blocks of data to spaces left free in the ROM after the program
sections have been allocated. It does not necessarily use all the 64 bytes available for
the Data ROM Window. An example of such an application is given in “Example Data
ROM Window Application” on page 39.

If you developing an absolute object you cannot delimit the window using .WINDOW
and .WINDOWEND directives. In this case, you define the boundary of the block of

573

AST6/LST6 - Working with The Data Space

data to be accessed using the Data ROM Window using the .BLOCK directive (see
the example on page 39).

5.4 Accessing Data Within the Data ROM Window

The location of the block of data in the ROM to be accessed by the Data ROM Win-
dow is specified by the Data ROM Window Register (DRWR) and the address oper-
and of the instruction accessing its contents.

Bits 5 to 0 of the DRWR define the start address of the block to be accessed via the
Data ROM Window. Bits 5 to 0 of the address operand define the offset of the ad-
dress to be accessed from the beginning of the block pointed to by DRWR. If the
block of data to be accessed is within a ROM page, the PRPR must be used to spec-
ify the page holding the block, in the same that it is used to access any area of pagi-
nated ROM.

The following diagram shows how Data ROM Window addressing works.

Data ROM Window Register Data space address in
instruction (40h - 7Fh)

Example:

DRWR =28h Instruction Address = 19h

ROM address = A19h

of1J0}J0]J]0]0]1]1(0lO0]1

5.4.1 Using <label>.D and <label>.W

g

To simplify the task of referencing data in the ROM via a Data ROM Window, AST6
includes two specific notations: <label>.D and <label>.W.

<label>.W enables you to set the DRWR to the block of data in ROM holding the
specified label (see “LABEL.W - Initialise Data ROM Window Register” on page 70).

37/86

AST6/LST6 - Working with The Data Space

<label>.D enables you to set the offset to the specified label from the beginning of the
block of data in ROM pointed to by the DRWR (see “LABEL.D - Access Data in Data
ROM Window” on page 68). This is then used in the instruction address.

The following example shows how to access a constant, labelled CST1, that is held in
a Data ROM Window:

LDI DRWR, CST1.W ;Set the DRWR to the block of
;data holding CST1

LDI X, CST1.D ;Set the X register to the
;address of CST1

LDI A, 40h :Load the value 40h into the
;accumulator

ADDI A, X ;Add the value held in CST1 to

;the accumulator contents (40h)

Some more complete examples of how to use the Data ROM Window are given be-
low.

Examples:

Using WINDOW and WINDOWEND to define a window and label to reference data
within that window:

.PP_ON ;Must be executed for LST6
.W_ON :Enables the use of windows

a .def Offh

X .def 80h

DRWR .def Ocah ;Define Data ROM Window register
.WINDOW

cst2 .byte 22h

string2 .ascii "ABCDEF"
.WINDOWEND

.section 2
Idi DRWR,cst2.W ;Select block holding cst2 and
;string 2
Id a,cst2.D ;put the address of cst2 into a

Idi x,string2.D ;put address of string2 into a

4

38/86

AST6/LST6 - Working with The Data Space

5.5 Example Data ROM Window Application

g

In a single-module source :

.PP_ON
\W_ON

a .def Offh

X .def 80h

DRWR .def Ocah
.section2

.block 64-$%64

cstl .byte Oceh

stringl .ascii

.section 0O

Idi DRW,cst1.W
Id a,cst2.D
Idi x,string2.D

:enables the use of windows

;Define Data ROM Window register

;Define 64-byte boundary

"abcdef”

;select block holding cstl and
;string 1

;put the address of cst2 into a

;put address of string2 into a

This example creates look-up tables in the ROM using the Data ROM Window. There
are four 64-byte data tables, that are cascaded in order to provide a 256 byte non-lin-
ear correction table. For clarity, the table is applied to a linear 8-bit value, obtained
from the ST6 on-chip analog-to-digital (a/d) converter. The example can easily be
adapted for a wide range of applications, such as temperature sensing and control,
frequency sensitivity correction, pattern generation and binary to bcd conversion.

To implement a 256-byte correction table, the two MSBs of the a/d result are used to
reference one of the four 64-byte data tables. The remaining 6 LSBs of the result
specify the offset from the beginning of the appropriate table.

39/86

AST6/LST6 - Working with The Data Space

j----- ST6 Table Look-up with Data ROM window
title “tables.st6”
.vers “ST6215”

.romsize 2
.PP_ON ;enable linker
.W_ON ;enable rom data window

skkkk kkkk kkkkkkkkkkkk
’

;standard definitions

skkkk kkkk kkkkkkkkkkkk
’

dnput “c:\st6\input\std_def.st6” ;st6 standard def file

skkkk kkkk kkkk kkkkkkkkkk
1

:local definitions here

kkkk hhkk kkkk kkkkkkk hkk
’

tablemask .equ 11000000b ;mask for table number
offsetmask .equ 00111111b ;mask for offset value
rdw_start .equ 040h ;start of data-rom-window
watchtime .equ Offh ;watchdog timeout period
storeacc .def 084h,0ffh,0ffh ;store accumulator during INT
result def 085h,0ffh,0ffh,m ;non-linear result storage
ek ko ok
;initialisation
ko o ok

.section 1
restart:

reti ;ends reset condition
;enables nmi

Idi dwdr,#watchtime ;reload watchdog

clr a ;clear the accumulator

set iord,ior ;enable interrupts

;configure port ¢

[di drpc,#10h

Idi orpc,#10h

[di ddrpc,#00h ;pc4 is analog
;configure a/d

set pds,adcr ;power up the a/d

40/86

4

AST6/LST6 - Working with The Data Space

4

nop
Idi adcr,#0b0h

skkkk kkkk kkkkkk
1

:main code here

skkkk kkkk kkkkkk
loop: [di dwdr,#watchtime
ip loop

kkkk kkkk kkk
’

;subroutines

skkkk kkkk kkk
1

skkkk hhkk kkkk kkk hhkhkk hhkkk kkk
’

;interrupt service routines

skkkk kkkk hkkk kkkhhkk kkkkkkhk
1

ad_int: Idi dwdr,#watchtime
Id storeacc,a
Id a,adr
Id y,a
andi a,#tablemask
testtabO: cpi a,#00000000b
jrnz testtabl
[di rdw,table0.w
ip offset
testtabl: cpi a,#01000000b
jrnz testtab?2
[di rdw,tablel.w
jp offset
testtab2: cpi a,#10000000b
jrnz testtab3
[di rdw,table2.w
jp offset
testtab3: Idi rdw,table3.w

;allow a/d to settle
;enable a/d interrupt

:start conversion

:continue

;save accumulator
;get a/d result
;make another copy of a/d
;result
:mask off lower six bits
;acc. now contains table
;number

:table zero?

;point to table zero

;table one?

;point to table one

;table two?

;point to table two

;point to table three

AST6/LST6 - Working with The Data Space

42/86

offset: ;rdw now points to the

:correct table

Id ay ;re-load a/d result
andi a,#off setmask ;mask off top bits
addi a,#rdw_start ;add in rdw start address
Id X,a

;X now points to the correct value (in the correct table!)
Id a,(x)
Id result,a
;"result” now contains the non-linear value corresponding to the linear

;result obtained from the temperature measurement

Idi adcr,#0b0Oh :start new conversion
Id a,storeacc ;recover accumulator
reti

s kkkk hhkk kkkk kkk hhkkk khkk kkkkhk hkk
’

; timer interrupt service routine

skkkk kkkk kkkk hkkkkkk hkkk hkkkkhk kkk
1

tim_int: reti

pbc_int: reti
pa_int: reti
nmi_int: reti

kkkk kkkk kkkkkk
’

; DATA TABLES *

skkkk kkkk kkkkkk
1

.window

tableO:

.byte 00h,00h,00h,00h,01h,01h,01h,01h
.byte 02h,02h,02h,02h,03h,03h,03h,03h
.byte 04h,04h,04h,04h,05h,05h,05h,05h
.byte 06h,06h,06h,06h,07h,07h,07h,07h
.byte 08h,08h,08h,08h,09h,09h,09h,09h
.byte Oah,0ah,0ah,0ah,0bh,0bh,0bh,0bh
.byte 0ch,0ch,0ch,0ch,0dh,0dh,0dh,0dh
.byte 0eh,0eh,0eh,0eh,0fh,0fh,0fh,0fh

.windowend

4

AST6/LST6 - Working with The Data Space

g

.window

tablel:
.byte 10h,10h,10h,11h,11h,11h,12h,12h
.byte 12h,13h,13h,13h,14h,14h,14h,15h
.byte 15h,15h,16h,16h,16h,17h,17h,17h
.byte 18h,18h,18h,19h,19h,19h,1ah,1lah
.byte 1ah,1bh,1bh,1bh,1ch,1ch,1ch,1dh
.byte 1dh